

Sheringham Shoal and Dudgeon Offshore Wind Farm Extension Projects

Appendix 2 - Habitats Regulations Assessment Screening Matrices (Revision B) (Tracked)

Revision B

Deadline 4 May 2023 Document Reference: 5.4.2.1 APFP Regulation: 5(2)(g)

Title: Sheringham Shoal and Dudgeon Offshore Wind Farm Extension Projects DCO Application								
Appendix 2 Hab (Tracked)	itats Regulations Ass	essment Screening	Matrices (Revision B)					
PINS Document r 5.4.2 <u>.1</u>	10.:							
Document no.: C282-RH-Z-GA-0	0158							
Date:	Classification							
August May 20232	Final							
Prepared by:								
Royal Haskoning	DHV							
Approved by:		Date:						
Felix Cryer, Equi	nor	August May 20223						

Habitats Regulations Assessment Screening Matrices

Doc. No. C282-RH-Z-GA-00158

Rev. <u>no.1</u><u>B</u>

Table of Contents

1	Revision B Updates at Deadline 4	<u></u> 7
2	INTRODUCTION	7
3	SCREENING MATRICES	7
3.1	Effects Considered	7
3.2	Sites Considered	
3.2.1	Updates Post-DCO Application	<u></u> 10
3.3	Assessment of Potential Effects	
REFE	ERENCES	
4	INTRODUCTION	7
2	SCREENING MATRICES	7
2.1	Effects Considered	7
2.2	Sites Considered	9
2.3	Assessment of Potential Effects	20
REFE	ERENCES	106
Table	le of Tables	
	e 2-1: Potential Effects considered in Screening	
	e 2-2: Sites Included in Screening (Shaded Rows Denote Transboundary Sites)	
	2-1: Potential Effects considered in Screening	
Table	e 2-2: Sites Included in Screening (Shaded Rows Denote Transboundary Sites)	10

Habitats Regulations Assessment Screening Matrices

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Glossary of Acronyms

BDMPS	Biologically Defined Minimum Population Scales
DEP	Dudgeon Offshore Wind Farm Extension Project
EIA	Environmental Impact Assessment
EMF	Electromagnetic Field
EPP	Evidence Plan Process
HDD	Horizontal Directional Drilling
HRA	Habitats Regulations Assessment
JNCC	Joint Nature Conservation Committee
km	Kilometre
LSE	Likely Significant Effects
MU	Management Unit
pSPA	Proposed Special Protected Area
RIAA	Report to Inform Appropriate Assessment
SAC	Special Area of Conservation
SCI	Site of Community Importance
SEP	Sheringham Shoal Offshore Wind Farm Extension Project
SPA	Special Protected Area
UK	United Kingdom
UXO	Unexploded Ordinance
Zol	Zone of Influence

Page 4 of 108 Classification: Open

Habitats Regulations Assessment Screening Matrices

Doc. No. C282-RH-Z-GA-00158 Rev. no.1<u>B</u>

Glossary of Terms

Dudgeon Offshore Wind Farm Extension Project (DEP)	The Dudgeon Offshore Wind Farm Extension onshore and offshore sites including all onshore and offshore infrastructure.
DEP offshore site	The Dudgeon Offshore Wind Farm Extension consisting of the DEP wind farm site, interlink cable corridors and offshore export cable corridor (up to mean high water springs).
DEP onshore site	The Dudgeon Offshore Wind Farm Extension onshore area consisting of the DEP onshore substation site, onshore cable corridor, construction compounds, temporary working areas and onshore landfall area.
DEP North array area	The wind farm site area of the DEP offshore site located to the north of the existing Dudgeon Offshore Wind Farm
DEP South array area	The wind farm site area of the DEP offshore site located to the south of the existing Dudgeon Offshore Wind Farm
DEP wind farm site	The offshore area of DEP within which wind turbines, infield cables and offshore substation platform/s will be located and the adjacent Offshore Temporary Works Area. This is also the collective term for the DEP North and South array areas.
European site	Sites designated for nature conservation under the Habitats Directive and Birds Directive. This includes candidate Special Areas of Conservation, Sites of Community Importance, Special Areas of Conservation, potential Special Protection Areas, Special Protection Areas, Ramsar sites, proposed Ramsar sites and sites compensating for damage to a European site and is defined in regulation 8 of the Conservation of Habitats and Species Regulations 2017, although some of the sites listed here are afforded equivalent policy protection under the National Planning Policy Framework (2021) (paragraph 176) and joint Defra/Welsh Government/Natural England/NRW Guidance (February 2021).
Offshore cable corridors	This is the area which will contain the offshore export cables or interlink cables, including the adjacent Offshore Temporary Works Area.
Offshore export cable corridor	This is the area which will contain the offshore export cables between offshore substation platform/s and

Habitats Regulations Assessment Screening Matrices

Doc. No. C282-RH-Z-GA-00158

	landfall, including the adjacent Offshore Temporary Works Area.
Offshore export cables	The cables which would bring electricity from the offshore substation platform(s) to the landfall. 220 – 230kV.
Offshore scoping area	An area presented at Scoping stage that encompassed all planned offshore infrastructure, including landfall options at both Weybourne and Bacton, allowing sufficient room for receptor identification and environmental surveys. This has been refined following further site selection and consultation for the PEIR and ES.
Offshore substation platform (OSP)	A fixed structure located within the wind farm site/s, containing electrical equipment to aggregate the power from the wind turbine generators and convert it into a more suitable form for export to shore.
Onshore cable corridor	The area between the landfall and the onshore substation sites, within which the onshore cable circuits will be installed along with other temporary works for construction.
Sheringham Shoal Offshore Wind Farm Extension Project (SEP)	The Sheringham Shoal Offshore Wind Farm Extension onshore and offshore sites including all onshore and offshore infrastructure.
SEP offshore site	Sheringham Shoal Offshore Wind Farm Extension consisting of the SEP wind farm site and offshore export cable corridor (up to mean high water springs).
SEP onshore site	The Sheringham Shoal Wind Farm Extension onshore area consisting of the SEP onshore substation site, onshore cable corridor, construction compounds, temporary working areas and onshore landfall area.
SEP wind farm site	The offshore area of SEP within which wind turbines, infield cables and offshore substation platform/s will be located and the adjacent Offshore Temporary Works Area.

Rev. no.1B

1 REVISION B UPDATES AT DEADLINE 4

1. This document has been updated at Deadline 4 to update the relevant Habitats
Regulations Assessment (HRA) screening matters upon which stakeholders have
commented during the Examination phase. The specific updates related to HRA
screening are described in Section 3.2.1 below. The HRA Updates Signposting
Note [document reference 5.4.4] describes the wider HRA updates undertaken
during Examination, including the locations of updated assessments.

42 INTRODUCTION

1.2. This document provides the Report to Inform Appropriate Assessment (RIAA) (document reference 5.4)[APP-059] screening matrices for the proposed Sheringham Shoal Offshore Wind Farm Extension Project (SEP) and Dudgeon Offshore Wind Farm Extension Project (DEP). The matrices use the information provided in the April 2021 Appendix 1 Habitats Regulations Assessment (HRA) Screening Report (document reference 5.4.1)[APP-060] but also incorporate any updates to the screening outcomes as the consultation on likely significant effects and associated assessments have developed through the pre-application period (see further details in Section 2.2). As such this document presents the "final version" of the Stage 1 screening outcomes, in line with Planning Inspectorate Advice Note 10 (Planning Inspectorate 2022).

23 SCREENING MATRICES

2.13.1 Effects Considered

2.3. Potential effects upon the European sites which are considered within the HRA screening exercise are provided in Table 3-1. In some instances the description of potential effects has evolved since screening was undertaken in April 2021 which is reflected in Table 3-1 and assessed in the RIAA.

Table 3-1: Potential Effects considered in Screening

Site Type	Feature(s)	Potential Effects
Special Protection Area (SPA)	All birds	 Offshore effects: Direct disturbance and displacement due to work activity, presence of turbines and other infrastructure, vessel movements and lighting Barrier effects due to the presence of turbines Collision risk due to the presence of turbines Indirect impacts through effects on habitats and prey species In-combination Onshore effects: Direct effects to designated nature conservation sites and associated qualifying features Indirect effects (e.g. noise, dust, groundwater supply) to designated nature conservation sites and associated qualifying features Direct effects (permanent and temporary loss) to habitats due to the footprint of the onshore works

Site Type	Feature(s)	Potential Effects
		 Direct and indirect effects (disturbance – noise, lighting etc / potential killing) to ex-situ habitats and protected species Spread of invasive non-native species as a result of construction activities In-combination effects
Special Area of Conservation/Site of Community Importance (SAC/SCI)	Benthic habitats	 Temporary physical disturbance* Temporary habitat loss* Permanent/long-term habitat loss* Increased suspended sediment concentrations Re-mobilisation of contaminated sediments Effects on bedload sediment transport Underwater noise and vibration Changes to physical processes resulting in changes to sediment supply Colonisation of foundations and cable protection* Invasive species* Electromagnetic fields EMF* In-combination effects * There are no SACs designated for benthic features within the direct footprint of SEP or DEP, therefore there are no sites that will be directly impacted during construction, operation or decommissioning. Therefore, no sites are screened in for direct effects. These include temporary physical disturbance, temporary and permanent/long-term habitat loss, colonisation of foundations and cable protection, invasive species and EMF effects
	Marine mammals	 Underwater noise (including, piling and other construction activities, vessels, O&M activities, operational turbines and decommissioning activities) and barrier effects Unexploded ordnance (UXO) clearance (separate marine licence) Vessel interaction (increased collision risk) Disturbance at seal haul-out sites Disturbance of foraging seals at sea Changes to water quality Changes to prey availability In-combination effects
	FMarine fish	 Temporary physical disturbance (of sea bed habitat, spawning or nursery grounds during intrusive works) * Temporary habitat loss* Permanent/long-term habitat loss* Increased suspended sediments and sediment re-deposition Re-mobilisation of contaminated sediment during intrusive works Underwater noise impacts to acoustically sensitive species during foundation piling

Rev. no.1B

Site Type	Feature(s)	Potential Effects
		 Effects from EMF* Impacts on commercially exploited species associated with their displacement from the area of activity / works In-combination effects
		* There are no SACs designated for fish features within the direct footprint of SEP or DEP, therefore there are no sites that will be directly impacted during construction, operation or decommissioning. Therefore, no sites are screened in for direct effects. These include temporary physical disturbance, temporary and permanent/long-term habitat loss and EMF effects
	Terrestrial (including freshwater)	 Direct impacts to statutory and non-statutory designated nature conservation sites and associated qualifying features Indirect impacts (e.g. noise, dust, groundwater supply) to statutory and non-statutory designated nature conservation sites and associated qualifying features Direct impacts (permanent and temporary loss) to habitats due to the footprint of the onshore works Direct and indirect impacts (disturbance – noise, lighting etc / potential killing) to adjacent habitats and protected species Spread of invasive non-native species as a result of construction activities In-combination effects

2.23.2 Sites Considered

- The methodology for screening of sites and effects is discussed in **Appendix 1**Habitats Regulations Screening Report ([document reference 5.4.1APP-060]).
- 4.5. Since the initial HRA screening exercise was undertaken in April 2021 and as the consultation on likely significant effects and associated assessments have developed through the pre-application period, there have been a number of changes to the original screening conclusions (which are not reflected in Appendix 1 Habitats Regulations Screening Report). The following changes to screening conclusions have been reflected in the RIAA:

SPAs:

- Pentland Firth proposed SPA (pSPA) was screened out as it was withdrawn as a pSPA following NatureScot's and JNCC's final advice and recommendations to Scottish Ministers on the proposals to classify a network of marine pSPAs (NatureScot, 2019);
- Fetlar SPA was screened out because no relevant qualifying features have connectivity with SEP and DEP;
- Outer Thames Estuary SPA (red-throated diver feature) was screened in because project vessels will transit through its northern extremity between SEP and DEP and the port at Great Yarmouth.

Page 9 of 108

Rev. no.1B

• Moray Firth SAC: During the HRA screening undertaken in April 2021, it was considered that no bottlenose dolphin designated sites had the potential for connectivity with SEP and DEP, and therefore were not screened in for further assessment. However, since the HRA screening undertaken in April 2021, there has been a recent increase in presence of the bottlenose dolphin along the northeast coast of England. Therefore, as a precautionary approach, it has been assumed that bottlenose dolphin off the east coast of England could be from the Moray Firth SAC and as such this designated site has been assessed further.

Broadland Ramsar: This site is screened in for migratory waterbird features which are at potential risk of collision. However, following further consideration with respect to potential disturbance effects on qualifying features, the Zone of Influence (ZoI) for potential disturbance effects associated with the Broadland Ramsar would be no greater than 5km. As Broadland Ramsar is 8.9km from the Order limits, no LSE has been concluded for this site and it was screened out from further assessment (see Table 3-2 of Appendix 1 HRA Screening Report for definitions of the potential ZoI).

3.2.1 Updates Post-DCO Application

- River Wensum SAC: Consultation with Natural England has identified that three features originally screened out white-clawed crayfish, brook lamprey and bullhead should be screened in on a precautionary basis because of the potential risk to these species should there be a 'bentonite break out', that is release of the drilling fluid in to the river. An assessment of this issue is provided in the submission made at Deadline 2: Report to Inform the Appropriate Assessment (RIAA) (onshore) Technical Note [REP2-050].
- Greater Wash SPA, Common Scoter: Natural England have requested (see NE Ref 25 in REP3-143) for a screening assessment of the common scoter feature of the Greater Wash SPA to be included. This has been provided in the Greater Wash screening matrix table below and concludes that there is no likelihood of a significant adverse effect on this feature, alone or in-combination, and it is therefore screened out.
- Greater Wash and North Norfolk Coast SPA Sandwich tern displacement effects: Following agreement with Natural England that a displacement assessment for Sandwich tern is not required (see ID 15 of the Draft Statement of Common Ground with Natural England (Offshore Ornithology) [REP2-045]), the Greater Wash and North Norfolk Coast SPA screening matrices have been updated to screen out displacement effects for Sandwich tern.
- Flamborough and Filey Coast SPA seabird assemblage has been screened in and an assessment is provided in the **Apportioning and HRA Updates**Technical Note (Revision B) [REP2-037].

Page 10 of 108

Rev. no.1B

Table 3-2 below provides a complete list of the sites included in screening. Transboundary sites are denoted by grey shaded rows in Table 3-2 and with a grey background against each site name in the screening matrix tables.

Table 3-2: Sites Included in Screening (Shaded Rows Denote Transboundary Sites)

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
1	Abers - Côtes des légendes SAC (France)		√			
2	Agger Tange, Nissum Bredning, Skibsted Fjord og Agerø SAC (Denmark)		√			
3	Ålborg Bugt, Randers Fjord Og Mariager Fjord SAC (Denmark)		√			
4	Alde, Ore and Butley Estuaries SAC			√		
5	Alde-Ore Estuary SPA & Ramsar	✓				
6	Anholt og havet nord for SAC (Denmark)		✓			
7	Archipel des Glénan SAC (France)		✓			
8	Auskerry	✓				
9	Baie De Canche Et Couloir Des Trois Estuaires SAC (France)		√		√	
10	Baie de Morlaix SAC (France)		√			
11	Baie de Seine Occidentale SAC (France)		√			
12	Baie de Seine Occidentale SPA (France)	√				
13	Baie de Seine Orientale SAC (France)	✓	*			

Page 11 of 108

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
14	Baie du Mont Saint- Michel SAC (France)		✓			
15	Balgö SAC (Sweden)		✓			
16	Bancs Des Flandres SAC (France)		✓	✓		
17	Benacre to Easton Bavents SPA	✓				
18	Berwickshire and North Northumberland Coast SAC		✓	~		
19	Borkum-Riffgrund SAC (Netherlands and Germany)		✓		✓	
20	Breydon Water SPA & Ramsar	√				
21	Broadland SPA & Ramsar	√				
22	Buchan Ness to Collieston Coast SPA	✓				
23	Calf of Eday SPA	✓				
24	Cap Sizun SAC		✓			
25	Chausey SAC (France)	✓	✓			
26	Chaussée de Sein SAC (France)		✓			
27	Copinsay SPA	✓				
28	Coquet Island SPA	✓				
29	Côte de Granit Rose-Sept Iles SAC (France)		√			
30	Côtes de Crozon (France)		✓			
31	Doggerbank SAC		✓			
32	Dornoch Firth and Morrich More SAC		√			

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
33	Dråby Vig SAC (Denmark)		✓			
34	Duinen Ameland (Netherlands)		✓			
35	Duinen en Lage Land Texel (Netherlands)		✓			
36	Duinen Goeree & Kwade Hoek (Netherlands)		√			
37	Duinen Vlieland (Netherlands)		✓			
38	Dünenlandschaft Süd-Sylt SAC (Germany)		√			
39	Dunes De La Plaine Maritime Flamande SAC (France)		√	√		
40	Dunes de l'Authie et Molliéres de Berck (France)		√			
41	East Caithness Cliffs SPA	✓				
42	East Mainland Coast, Shetland pSPA	✓				
43	Estuaire de la Canche, dunes picardes plaquées sur l'ancienne falaise, forêt d'Hardelot et falaise d'Equihen SAC (France)		√			
44	Estuaire de la Seine SCI (France)		✓			
45	Estuaires et Littoral Picards (baies de Somme et d'Authie) SAC (France)		√		√	
46	Fair Isle SPA	✓				

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
47	Falaise du Bessin Occidental SPA (France)	✓				
48	Falaises du Cran Aux Oeufs et du Cap Gris-Nez, Dunes du Chatelet, Marais de Tardinghen et Dunes de Wissant SAC (France)		√	√		
49	Faray and Holm of Faray SAC		✓			
50	Farne Islands SPA	✓				
51	Firth of Tay & Eden Estuary SPA & Ramsar	√				
52	Firth of Tay & Eden Estuary SAC		✓			
53	Flamborough and Filey Coast SPA	✓				
54	Forth Islands SPA	✓				
55	Foula SPA	✓				
56	Fowlsheugh SPA	✓				
57	Gibraltar Point SPA & Ramsar	√				
58	Great Yarmouth North Denes SPA	√				
59	Greater Wash SPA	✓				
60	Grevelingen SAC (Netherlands)		✓			
61	Gule Rev SCI (Denmark)		√			
62	Gullmarsfjorden SAC (Sweden)		✓			
63	Haisborough, Hammond and Winterton SAC			√		
64	Hallands Väderö (Sweden)		✓			

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
65	Hamburgisches Wattenmeer SCI (Germany)		√			
66	Haringvliet SAC (Netherlands)				✓	
67	Havet og kysten mellem Praestø Fjord og Grønsund (Denmark)					
68	Havet Omking Norde Ronner SAC (Denmark)		✓			
69	Helgoland mit Helgoländer Felssockel SAC (Germany)		√			
70	Hermaness, Saxa Vord and Valla Field SPA	√				
71	Hesselø med omliggende stenrev SAC (Denmark)		✓			
72	Hirsholmene, havet vest herfor og Ellinge Å's udløb SAC (Denmark)		√			
73	Hornsea Mere SPA	✓				
74	Hoy SPA	✓				
75	Humber Estuary SAC		✓	✓	✓	
76	Humber Estuary SPA & Ramsar	✓				
77	Hund und Paapsand SCI (Germany)		✓			
78	Imperial Dock Lock, Leith SPA	√				
79	Inner Dowsing, Race Bank and North Ridge SAC			√		
80	Isle of May SAC		✓			

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
81	Klaverbank SAC (Netherlands)		✓			
82	Kosterfjorden- Väderöfjorden SAC (Sweden)		✓			
83	Kungsbackafjorden SAC (Sweden)		✓			
84	Küsten- und Dünenlandschaften Amrums SAC (Germany)		√			
85	Littoral Seino-Marin SPA (France)	√				
86	Loch of Strathbeg SPA & Ramsar	✓				
87	Løgstør Bredning, Vejlerne og Bulbjerg SAC (Denmark)		✓			
88	Lovns Bredning, Hjarbæk Fjord og Skals, Simested og Nørre Ådal, Skravad Bæk SAC (Denmark)		√			
89	Malmöfjord SAC (Sweden)		✓			
90	Marais du Cotentin et du Bessin - Baie des Veys SAC (France)		√			
91	Marwick Head SPA	✓				
92	Måseskär SAC (Sweden)		✓			
93	Minsmere- Walberswick SPA & Ramsar	✓				
94	Moray Firth SAC		✓			
95	Mousa SPA	✓				
96	Mousa SAC		✓			
97	Nationalpark Niedersächsisches		✓			

Rev. no.1B

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
	Wattenmeer SAC (Germany)					
98	Nene Washes	✓				
99	Nibe Bredning, Halkær Ådal og Sønderup Ådal SAC		✓			
100	Nidingen SAC (Sweden)		✓			
101	Noordzeekustzone SAC (Netherlands)		√	√	✓	
102	Nordre älvs estuarium SAC (Sweden)		√			
103	Nordvästra Skånes havsområde SAC (Sweden)		√			
104	Norfolk Valley Fens SAC					✓
105	North Caithness Cliffs SPA	✓				
106	North Norfolk Coast SPA & Ramsar	✓				
107	North Norfolk Sandbanks and Saturn Reef SAC			√		
108	Northumberland Marine SPA	✓				
109	Northumbria Coast SPA & Ramsar	✓				
110	Noss SPA	✓				
111	NTP S-H Wattenmeer und angrenzende Küstengebiete SAC (Germany)		√			
112	Oosterschelde SAC (Netherlands)		✓			
113	Orfordness - Shingle Street SAC			✓		

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
114	Östliche Deutsche Bucht SAC (Germany)	√				
115	Ouessant-Molène SAC (France)		✓			
116	Ouse Washes SPA	✓				
117	Outer Firth of Forth and St Andrews Bay complex SPA	√				
118	Outer Thames Estuary SPA	✓				
119	Overstrand Cliffs SAC					~
120	Papa Stour SPA	✓				
121	Papa Westray (North Hill and Holm) SPA	✓				
122	Pater Noster- skärgården SAC (Sweden)		✓			
123	Pentland Firth Islands SPA	✓				
124	Presqu'ile de Crozon SAC (France)		✓			
125	Récifs et marais arrière-littoraux du Cap Lévi à la Pointe de Saire SAC (France)		✓			
126	Récifs Gris-Nez Blanc-Nez SAC (France)		✓	✓		
127	Ridens et dunes hydrauliques du détroit du Pas-de- Calais SAC (France)		√	✓		
128	River Derwent SAC				✓	
129	River Wensum SAC					✓
130	Roches de Penmarch (France)		✓			

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
131	Ronas Hill - North Roe and Tingon SPA	✓				
132	Rousay SPA	✓				
133	Sälöfjorden SAC (Sweden)		✓			
134	Sanday SAC		✓			
135	SBZ 1 / ZPS 1 SAC (Netherlands)		✓			
136	Scapa Flow pSPA	✓				
137	Seas off Foula SPA	✓				
138	Seevogelschutzgebi et Helgoland SPA (Germany)	√				
139	Skagens Gren og Skagerrak SAC (Denmark)		✓			
140	Soteskär SAC (Sweden)		✓			
141	Southern North Sea SAC		✓			
142	St Abb`s Head to Fast Castle SPA	✓				
143	Steingrund SAC		✓			
144	Store Rev SCI (Denmark)		✓			
145	Stour and Orwell Estuaries SPA & Ramsar	✓				
146	Strandenge på Læsø og havet syd herfor SAC (Denmark)		✓			
147	Sumburgh Head SPA	✓				
148	Sydlige Nordsø SAC (Denmark)		✓			
149	Sylter Außenriff SCI (Germany)	√	✓		√	

SEP and DEP Reference Number	Designated Site	Ornithology	Marine Mammals	Benthic Habitats	Fish	Terrestrial
150	Teesmouth and Cleveland Coast SPA & Ramsar	√				
151	The Broads SAC & SPA					√
152	The Wash and North Norfolk Coast SAC		✓	√		
153	The Wash SPA & Ramsar	✓				
154	Tregor Goëlo SAC (France)		√			
155	Troup, Pennan and Lion`s Heads SPA	✓				
156	Unterems und Außenems SCI (Germany)		√			
157	Vadehavet med Ribe Å, Tved Å og Varde Å vest for Varde SAC (Denmark)		√			
158	Venø, Venø Sund SAC (Denmark)		✓			
159	Vlaamse Banken SAC (Netherlands)		✓			
160	Vlakte van de Raan SCI/SAC (Netherlands)		√			
161	Voordelta SAC and SPA (Netherlands)	✓	✓			
162	Vrångöskärgården SAC (Sweden)		✓			
163	Waddenzee SAC (Netherlands)		✓			
164	West Westray SPA	✓				
165	Yell Sound Coast SAC		√			
166	Ythan Estuary, Sands of Forvie and Meikle Loch SPA	√				

Rev. no.1B

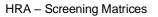
2.33.3 Assessment of Potential Effects

- _A summary of the evidence presented in the determination of the risk of likely significant effects (LSE) on the relevant qualifying features of a site is detailed within the footnotes to the screening matrices below.
- 7.8. The following abbreviations are used within the screening matrices:
 - Y = LSE cannot be excluded
 - N = LSE can be excluded
 - C = construction
 - O = operation
 - D = decommissioning
- Where effects are not applicable to a particular feature they are greyed out. 8.9.

Page 21 of 108 Classification: Open

HRA – Screening Matrices Doc. No. C282-RH-Z-GA-00158

Rev. no.1B


Site		1													
Name of European Site:		Abers - Côt	es Des Leger	ndes SAC											
Distance to SEP and DEP (kr	n)	631 and 647	7												
	Likely effect	t(s) of SEP an	nd DEP												
Site Features	Un	derwater noi	se		nteractions (in collision risk		Change	es to prey ava	ilability	Chang	ges to water o	juality	1	In-combination	n
	С	0	D	С	0	D	С	o	D	С	О	D	С	o	D
Grey seal, Halichoerus grypus	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seals can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	2														
Name of European Site:	Agger Tang	ge, Nissum B	redning, Ski	bsted Fjord o	g Agerø SA	C									
Distance to SEP and DEP (km)	592 and 568	8													
Marine Mammals															
	Likely effec	t(s) of SEP a	and DEP												
Site Features	Un					sel Interactions (increased collision risk) Changes to prey availability					Changes to water quality In-combination				
	С	o	D	С	0	D	С	o	D	С	o	D	С	O	D
Harbour seal, <i>Phoca vitulina</i>	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of Appendix 1 HRA Screening Report).

Site	3
Name of European Site:	Ålborg Bugt, Randers Fjord og Mariager Fjord SAC
Distance to SEP and DEP (km)	684 and 663
Marine Mammals	

Rev. no.1B

	Likely effec	ct(s) of SEP a	ind DEP												
Site Features	Underwater noise				Vessel Interactions (increased collision risk)			Changes to prey availability			es to water of	quality	In-combination		
	С	o	D	С	0	D	С	0	D	С	0	D	С	o	D
Harbour seal, Phoca vitulina	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of Appendix 1 HRA Screening Report).

Site	4																	
Name of European Site:	Alde, Ore	and Butley	/ Estuaries	SAC														
Distance to SEP and DEP (km)	104 and 1	10																
Offshore habitats																		
	Likely eff	ect(s) of SE	P and DEP	1														
Site Features	Perman	ent / long t	erm loss	Temporary physical disturbance / habitat loss				eased susp ent and sedi depositior	ment re-		mobilisation		Unde	rwater nois	se and	Ir	n-combinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Mudflats and sandflats not covered by seawater at low tide	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Estuaries	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Atlantic Salt Meadows	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

a) Outside potential ZoI (Table 4-2 of HRA Screening Report).

Site	5												
Name of European Site:	Alde-Ore Estu	ary SPA and Ra	msar										
Distance to SEP and DEP (km)	104 and 110												
	Likely effect(s) of SEP and DE	P										
Site Features		Collision Risk Displacement / Disturbance Barrier Effect In-combination											
	С	0	D	С	0	D	С	0	D	С	0	D	

Classification: Open Status: Final

Page 23 of 108

HRA – Screening Matrices Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Site	5			
Name of European Site:	Alde-Ore Estuary SPA and Ran	nsar		
Distance to SEP and DEP (km)	104 and 110			
Breeding lesser black-backed gull	Y (a)	N (b)	N (b)	Y (a)
Breeding marsh harrier and avocet	N (c)	N (c)	N (c)	N (c)
Breeding little tern	N (d)	N (d)	N (d)	N (d)
Breeding Sandwich tern	N (e)	N (e)	N (e)	N (e)
Nonbreeding ruff	N (f)	N (f)	N (f)	N (f)
Avocet, redshank	N (c)	N (c)	N (c)	N (c)

- a) SEP and DEP are within the mean maximum foraging range of breeding lesser black-backed gull from this SPA and Ramsar site (Table 7-4 of the HRA Screening Report), meaning that there is a potential impact pathway for this population.
- b) Evidence indicates that lesser black-backed gulls are not affected by displacement, disturbance or barrier effects at offshore wind farms (see Chapter 11 Offshore Ornithology [(document reference 6.1.11 APP-097]).
- c) The presence of other qualifying species from this SPA at the Projects will be sporadic at most during passage periods, and would result in negligible numbers passing through SEP and DEP. They are not anticipated at SEP and DEP during the breeding season due to their habitat preferences, and are therefore screened out.
- d) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.
- e) SEP and DEP are beyond maximum foraging range of breeding Sandwich tern from this SPA (**Table 7-4** of the **HRA Screening Report**), there is no impact pathway for this population. Whilst birds from the SPA will be present at SEP and DEP on migration, meaning an impact pathway does exist, the proportion of the population present is expected to be small (<0.1% of Sandwich terns present) compared with the wider Biologically Defined Minimum Population Scales (BDMPS) (Furness, 2015). This qualifying feature is therefore screened out.

Site	6														
Name of European Site:	Anholt og h	avet nord for	SAC												
Distance to SEP and DEP (km)	762 and 740														
	Likely effect	t(s) of SEP an	d DEP												
Site Features	U	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	luality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	7
Name of European Site:	Archipel des Glénan SAC

Page 24 of 108

HRA – Screening Matrices

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Distance to SEP and DEP (km)	687 and	702													
	Likely et	ffect(s) of SEI	P and DEP												
Site Features		Underwater r	noise		nteractions (ir collision risk)		Change	es to prey ava	ilability	Chan	ges to water q	juality	ı	n-combinatio	n
	С	0	D	С	О	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	8											
Name of European Site:	Auskerry											
Distance to SEP and DEP (km)	680 and 670											
Offshore Ornithology												
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding European storm petrel		N (a)			N (a)			N (a)			N (a)	
Arctic tern		Y (b)									Y (b)	

- a) European storm petrel was not recorded at SEP and DEP during the baseline surveys. There is no impact pathway for this qualifying feature, and it is therefore screened out.
- b) SEP and DEP are beyond the maximum foraging range of breeding Arctic tern from this SPA (Table 7-4 of the HRA Screening Report). There is therefore no impact pathway and this breeding arctic tern is screened out. However, outside the breeding season, the proportion of Arctic tern present at SEP and DEP that are estimated by Furness (2015) to be from this SPA is approximately 1.1%. This is considered sufficiently large for LSE to be a possibility; therefore, this qualifying feature is screened in.

9

Site

Rev. no.1B

Baie de Can	che et couloir	r des trois est	uaires SAC											
279 and 286														
Likely effect	(s) of SEP an	d DEP												
Un	nderwater noi	se		•		Change	s to prey ava	ailability	Chang	ges to water	quality	l l	n-combinatio	'n
С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
	279 and 286 Likely effect Un C N (a)	279 and 286 Likely effect(s) of SEP and Underwater noise C N (a) N (a) N (a) N (a)	279 and 286 Likely effect(s) of SEP and DEP Underwater noise C O D N (a)	Likely effect(s) of SEP and DEP Underwater noise Vessel In Vesse	279 and 286 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (i collision risk C O D C O N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a)	279 and 286 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) C O D C O D N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a)	279 and 286 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Change collision risk C O D C N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a) N (a)	Likely effect(s) of SEP and DEP Underwater noise C O D C O D C O N (a) N (b) N (b	279 and 286 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) C O D C O D C O D N (a) N	279 and 286 Likely effect(s) of SEP and DEP Underwater noise C O D C O D C O D C N (a)	279 and 286 Likely effect(s) of SEP and DEP Underwater noise C O D C D C	Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality Changes to water quality N (a)	279 and 286 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) C O D C O D C O D C N (a)	279 and 286 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) C O D C D C

	Likely eff	ect(s) of SE	P and DEP															
Site Features		nanent / lon habitat los	_		porary phy pance / hab			eased susponts and sed	iment re-		mobilisation		Unde	rwater nois vibration	se and	exi asso displace	s on commoloited speciated with ement from activity / wo	their the area
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Salmon	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Sea lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
River lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Allis shad	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea Management Unit (MU) and is therefore screened out (Section 6.1.2.1 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

b) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE.

Site	10															
Name of Europe Site:	Baie De N	lorlaix SAC														
Distance to SEP and DEP (km)	591 and 6	and 606														
Marine Mammals																
	Likely eff	ect(s) of SEP	and DEP													
Site Features		Underwater no	oise		nteractions (ir collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	quality	ı	n-combinatio	n	
	С	О	D	С	O	D	С	0	D	С	0	D	С	0	D	
Grey seal	N(b)	N(b)	N(a)	N(b)	N(a)	N(b)	N(b)	N(b)	N(b)	N(b)		N(b)	N(b)	N(b)	N(b)	

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	11															
Name of European Site:	Baie de Seir	ne Occidentale	SAC													
Distance to SEP and DEP (km)	416 and 423	16 and 423														
Marine Mammals																
	Likely effect	(s) of SEP an	d DEP													
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chang	ges to water o	quality	ı	In-combinatio	n	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
Harbour sea	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Section 6.1.2.1 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

waterbirds

Rev. no.1B

Site 12 Name of European Site: Baie de Seine Occidentale SPA Distance to SEP and DEP (km) 416 and 422 Likely effect(s) of SEP and DEP **Collision Risk Displacement / Disturbance Barrier Effect** In-combination **Site Features** D D D С C 0 C 0 C 0 0 D Breeding, wintering and passage N(a) N(a) N(a) N(b)

a) SEP and DEP are beyond the maximum foraging range of all breeding seabird species at this SPA except for gannet (Table 7 4). Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from the Flamborough and Filey Coast SPA (Wakefield et al., 2013), it is considered highly unlikely that breeding birds from this SPA would regularly forage at DEP or SEP during the breeding season. Proportions of SPA seabird populations migrating through DEP and SEP outside the breeding season are expected to be small compared with the wider BDMPS (Furness, 2015). On this basis, all qualifying features are screened out.).

Site	13														
Name of European Site:	Baie de Se	ine Orientale	SAC												
Distance to SEP and DEP (km)	420 and 43														
	Likely effec	ely effect(s) of SEP and DEP													
Site Features	Ur	nderwater no	oise		teractions (i		Change	es to prey av	ailability	Chang	ges to water	quality	lı	n-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Bottlenose dolphin	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (see Section 6.1.2.1 of the HRA Screening Report). The typical and average for aging range for harbour seal is 50-80km (SCOS, 2017) (Table 6-4 of the HRA Screening Report).

Rev. no.1B

Site	14														
Name of European Site:	Baie du Mor	nt Saint-Miche	el SAC												
Distance to SEP and DEP (km)	514 and 527														
	Likely effect	t(s) of SEP an	d DEP												
Site Features	Uı	nderwater noi	ise	Vessel I	nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP offshore sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	15														
Name of European Site:	Balgö S	AC													
Distance to SEP and DEP (km)	816 and	794													
							Likely (effect(s) of SI	EP and DEP						
Site Features		Underwater n	oise		nteractions (in collision risk)		Change	es to prey av	ailability	Chan	ges to water o	quality		In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

s	ite	16
N	lame of European Site:	Bancs des Flandres SAC
	Distance to SEP and DEP (km)	204 and 209

HRA – Screening Matrices Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Marine	e Mai	mmal	S

	Likely effect	(s) of SEP and	DEP												
Site Features	U	nderwater noi	se		Interactions (in collision risk)		Change	es to prey ava	ilability	Char	nges to water q	uality		In-combination	n
	С	0	D	С	0	D	С	О	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Benthic Habitats

Site	Perma	anent / Ion Ioss	g term		oorary phy ance / hab		Increa	ased suspo sediment			mobilisatio		Under	water nois			cts on bed ment trans		In-	combinati	on
Features	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	О	D	С	О	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)		N (b)		N (b)	N (b)	N (b)

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (see Section 6.1.2.1 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.
- b) Outside potential ZoI (Section 4.2 of the HRA Screening Report).

Site	17												
Name of European Site:	Benacre to Easton Bavents SPA												
Distance to SEP and DEP (km)	80 and 82.7												
		Likely effect	t(s) of SEP and	I DEP									
Site Features			Collision Risk		Displa	cement/Distur	bance		Barrier Effect		I	n-combination	
		С	0	D	С	0	D	С	0	D	С	0	D
Breeding Great bittern			N (a)			N (a)			N (a)			N (a)	
Breeding Eurasian marsh harr	ier		N (a)			N (a)			N (a)			N (a)	
Breeding Little tern			N (b)			N (b)			N (b)			N (b)	

- a) These features of this SPA are unlikely to utilise SEP or DEP due to their habitat preferences. There is no impact pathway for these species and they are therefore screened out (Table 7-5 of the HRA Screening Report).
- b) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out

Rev. no.1B

Site	18
Name of European Site:	Berwickshire and North Northumberland Coast SAC
Distance to SEP and DEP	291 and 284

Marine Mammals

(km)

	Likely effect	(s) of SEP and	I DEP												
Site Features	Ur	nderwater nois	se		nteractions (in collision risk)		Change	s to prey avai	lability	Cha	nges to water q	uality	In	-combination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Benthic Habitats

Site	Perma	nent / long loss	g term	_	orary phys			sed suspe sediment	nded		nobilisatio inated sed			water nois vibration	e and		ts on bedl nent trans		In-c	combinati	on
Features	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Coastal lagoons	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)		N (b)		N (b)	N (b)	N (b)
Submerged or partially submerged sea caves	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)		N (b)		N (b)	N (b)	N (b)

- a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).
- b) Outside potential Zol (Section 4.2 of the HRA Screening Report).

Site	19														
Name of European Site:	Borkum-Rif	fgrund (Bork	um Reef Grou	und) SAC											
Distance to SEP and DEP (km)	334 and 316	5													
Marine Mammals	<u>'</u>														
	Likely effec	t(s) of SEP a	nd DEP												
Site Features	Ur	nderwater no	ise		nteractions (i collision risk		Change	es to prey ava	ailability	Chang	es to water	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	C	0	D	С	0	D
Harbour porpoise	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Grey seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Fish	'		•										'		

HRA – Screening Matrices Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Site Features	Permar habitat	nent / long loss	term		rary physi ance / hab			ed susper nt and sed			oilisation of inated see		Underw vibratio	rater noise on	e and	exploite associa displac	s on comned species ated with the ement from activity / v	heir m the	In-comi	oination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Twaite shad	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Section 6.1.2.1 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.
- b) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE.

Site	20												
Name of European Site:	Breydon Wa	ter SPA and Ra	amsar										
Distance to SEP and DEP (km)	59.2 and 61.4	4											
	Likely effect	kely effect(s) of SEP and DEP											
Site Features		Collision Risk	c	Displa	cement/Distu	rbance		Barrier Effect			In-combination	1	
	С	0	D	С	0	D	С	0	D	С	0	D	
Non-breeding migratory waterbird features		Y (a)									Y (a)		
Breeding common tern		N (b)			N (b)			N (b)			N (b)		

- a) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.
- b) SEP and DEP are beyond the maximum foraging range of breeding common tern from this SPA, and therefore no impact pathway exists for this population. The presence of common tern at SEP and DEP from this SPA during passage periods in large numbers is considered unlikely as the SPA is located south of SEP and DEP (Furness, 2015). The common tern population of this SPA would represent approximately 0.1% of birds recorded at SEP and DEP during migration seasons. This qualifying feature is therefore screened out as despite an impact pathway being identified, potential impacts on such a small number of birds would not be sufficiently large to represent LSE.

Site	21														
Name of European Site:	Broadland	SPA and Rai	nsar												
Distance to SEP and DEP (km)	37.3 and 41	41.7 from the wind farm sites respectively and 8.9km from the onshore cable corridor													
	Likely effec	ct(s) of SEP	and DEP												
Site Features	C	Collision Risk	(Displac	ement/Distu	rbance	Е	Barrier Effect	t		I indirect imp f invasive no species		In	-combinatio	n
	С	0	D	С	0	D	С	0	D	С	О	D	С	0	D
Breeding bittern and marsh harrier		N (a)			N (a)			N (a)						N (a)	

HRA – Screening Matrices Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Non-breeding migratory waterbird features including Bewick's Swan and whooper swan	Y (b)							Y (b)	
Calcareous fens with Cladium mariscus and species of the Caricion davallianae Calcium-rich fen dominated by great fen sedge (saw sedge). Alkaline fens Calcium-rich springwaterfed fens. Alluvial forests with Alnus glutinosa Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae)					N (c)	N (c)	N (c)		
Desmoulin`s whorl snail <i>Vertigo</i> moulinsiana Otter <i>Lutra lutra</i> Fen orchid <i>Liparis loeselii</i>					N (c)	N (c)	N (c)		

- a) Breeding birds named as qualifying features of this SPA are unlikely to utilise SEP or DEP due to their habitat preferences. This means that no impact pathway has been identified and these qualifying features are therefore screened out.
- b) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.
- c) Outside potential ZoI and therefore screened out (see Table 3-2 of Appendix 1 HRA Screening Report).

Site	22													
Name of European Site:	Buchan Ness	to Collieston Co	ast SPA											
Distance to SEP and DEP (km)	490 and 480													
Site Features	Likely effect(s	of SEP and DE Collision Risk		Displ C	acement/Distur	bance D	C	Barrier Effect	D	c	In-combination	D		
Breeding seabird assemblage, including as named features kittiwake, shag, fulmar, guillemot, herring gull		N (a)		ŭ	N (a)			N (a)			N (b)			

- a) SEP and DEP are beyond the maximum foraging range of breeding guillemot, herring gull and shag (Table 7-4 of the HRA Screening Report). There is no impact pathway for these qualifying features during the breeding season, which are therefore screened out. SEP and DEP are within the mean maximum foraging range of fulmar and the maximum foraging range of kittiwake from this SPA (Table 7-4 of the HRA Screening Report). Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out. Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Kittiwake: Approximately 2.9% of birds present during autumn migration and 3.5% during spring migration.
 - Guillemot: Approximately 2.1% of birds present during non-breeding season.
 - Herring gull: Approximately 2.4% of birds present during non-breeding season.
 - Shag: Not present during non-breeding season.
 - Fulmar: Approximately 0.4% of birds present during autumn and spring migration seasons.

Rev. no.1B

Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out.

Site	23											
Name of European Site:	Calf of Eday S	SPA .										
Distance to SEP and DEP (km)	710 and 700											
Site Features	Likely effect(s	s) of SEP and D Collision Risk		Disnl	acement/Distur	hance		Barrier Effect			In-combination	
ono i outuros	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features cormorant, fulmar, guillemot, kittiwake and great black-backed gull		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

- a) SEP and DEP are beyond the maximum foraging range of all breeding seabirds included as qualifying features of this SPA except fulmar and kittiwake (Table 7-4 of the HRA screening Report). For cormorant, great black-backed gull and guillemot, no impact pathway exists during the breeding season; these qualifying features are therefore screened out. Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP. Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Cormorant: Not present during the non-breeding season.
 - Great black-backed gull: Approximately 1.4% of birds present during non-breeding season.
 - Guillemot: Approximately 0.9% of birds present during non-breeding season.
 - Fulmar: Approximately 0.5% of birds present during autumn and spring migration seasons.
 - Kittiwake: Approximately 0.2% of birds present during autumn and spring migration seasons.

Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore they are screened out.

b) The predicted effect attributable to SEP and DEP is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Calf of Eday SPA (see Section 7.1.3 of the HRA Screening Report).

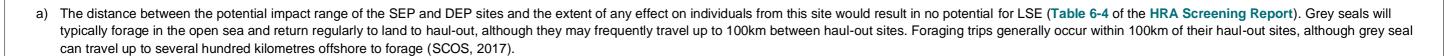
Site	24														
Name of European Site:	Cap Sizur	SAC													
Distance to SEP and DEP (km)	681 and 6	96													
	Likely effe	ect(s) of SEP	and DEP												
Site Features	ı	Jnderwater n	oise		nteractions (in collision risk)		Chang	es to prey ava	ailability	Chang	ges to water	quality		In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	25														
Name of European Site:	Chausey SA	IC													
Distance to SEP and DEP (km)	496 and 509	,													
	Likely effect	t(s) of SEP ar	nd DEP												
Site Features	U	nderwater no	ise		nteractions (in collision risk)		Chang	es to prey ava	ailability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).


Site	26														
Name of European Site:	Chaussée d	de Sein SAC													
Distance to SEP and DEP (km)	701 and 710	6													
	Likely effec	t(s) of SEP a	nd DEP												
Site Features	U	nderwater no	ise		nteractions (in collision risk		Chang	es to prey ava	ailability	Chang	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Classification: Open Status: Final

Page 35 of 108

Rev. no.1B

Site	27											
Name of European Site:	Copinsay SPA											
Distance to SEP and DEP (km)	670 and 660											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features fulmar, guillemot, kittiwake and great black-backed gull		N (a)			N (a)			N (a)			N (b)	

- a) SEP and DEP are beyond the maximum foraging range of the breeding seabirds named as qualifying features of this SPA except fulmar and kittiwake (Table 7-4 of the HRA Screening Report). There is no impact pathway for the other qualifying features during the breeding season; they are therefore screened out. Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out. Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Guillemot: Approximately 0.8% of birds present during non-breeding season.
 - Kittiwake: Approximately 0.2% of birds present during autumn migration and 0.2% during spring migration.
 - Great black-backed gull: Approximately 1.1% of birds present during non-breeding season.
 - Fulmar: Approximately 0.5% of birds present during autumn and spring migration seasons.

Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore they are screened out.

b) The predicted effect attributable to SEP and DEP is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Calf of Eday SPA (see Section 7.1.3 of the HRA Screening Report).

Site	28											
Name of European Site:	Coquet Island	SPA										
Distance to SEP and DEP (km)	289 and 282											
	Likely effect(s)	of SEP and DEF	•									
Site Features		Collision Risk		Disp	lacement/Disturb	oance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding roseate tern		N (a)			N (a)			N (a)			N (a)	

Rev. no.1B

Arctic tern, common tern, Sandwich tern	Y (b)	Y (b)	Y (b)		Y (b)
---	-------	-------	-------	--	-------

- a) Roseate tern has not been recorded at SEP and DEP, meaning that there is no impact pathway for this species. It is therefore screened out.
- b) SEP and DEP are beyond the maximum foraging range of breeding Sandwich tern, common tern and Arctic tern (Table 7-4 of the HRA Screening Report). There is therefore no impact pathway for these qualifying features during the breeding season, and they are screened out. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Arctic tern: Approximately 2.1% of birds present during autumn and spring migrations.
 - Common tern: Approximately 1.5% of birds present during autumn and spring migrations.
 - Sandwich tern: Approximately 5.1% of birds present during autumn and spring migrations.

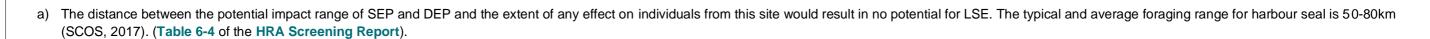
These proportions are all considered sufficiently large for these qualifying features to be screened in at these times of year.

Site	29														
Name of European Site:	Côte De Gra	nit Rose-Sept	-lles SAC												
Distance to SEP and DEP (km)	552 and 567														
	Likely effect	(s) of SEP an	d DEP												
Site Features	U	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ailability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
				N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	30														
Name of European Site:	Côtes d	e Crozon SAC													
Distance to SEP and DEP (km)	674 and	689													
	Likely e	ffect(s) of SE	P and DEP												
Site Features		Underwater i	noise		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chan	ges to water o	quality	I	In-combination	n
	С	0	D	С	o	D	С	o	D	С	o	D	С	o	D

Rev. no.1B


 Grey seal
 N(a)
 N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	31														
Name of European Site:	Doggerb	ank SAC													
Distance to SEP and DEP (km)	313 and	290													
	Likely ef	fect(s) of SEF	P and DEP	l									1		
Site Features		Underwater r	noise		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chan	ges to water q	uality		n-combination	1
	С	0	D	С	0	D	С	0	D	С	o	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)		N(c)	N(c)	N(c)	N(c)

a) The distance between the potential impact range of the proposed project and the extent of any impact on individuals from this site are negligible and would result in no potential for LSE.

Site	32													
Name of European Site:	Dornocl	h Firth and Mo	orrich More SA	C										
Distance to SEP and DEP (km)	598 and	590												
	Likely e	ffect(s) of SEF	P and DEP											
Site Features	Likely e	ffect(s) of SEF Underwater r			nteractions (incollision risk)	Change	es to prey ava	ilability	Chan	ges to water o	uality		In-combination	n
Site Features	Likely e					Change	es to prey ava	ilability	Chan C	ges to water o	uality D	С	In-combination	n D

Site	33														
Name of European Site:	Dråby V	ig SAC													
Distance to SEP and DEP (km)	636 and	613													
	Likely e	ffect(s) of SEF	and DEP												
Site Features		Underwater n	oise		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water q	luality	ı	n-combinatior	1
	С	0	D	С	0	D	С	o	D	С	0	D	С	O	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	34														
Name of European Site:	Duinen A	Ameland													
Distance to SEP and DEP (km)	291 and	273													
	Likely ef	fect(s) of SEF	P and DEP	ı						ı			ı		
Site Features		Underwater r	noise		nteractions (ir collision risk)		Chang	jes to prey ava	ilability	Chan	ges to water q	uality		In-combination	1
	С	0	D	С	o	D	С	0	D	С	0	D	С	o	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Rev. no.1B

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	35														
Name of European Site:	Duinen en La	age Land Tex	el												
Distance to SEP and DEP (km)	230 and 213														
	Likely effect	(s) of SEP and	d DEP												
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	o	D	С	О	D	С	o	D	С	o	D	С	o	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	36														
Name of European Site:	Duinen Goer	ree & Kwade H	łoek												
Distance to SEP and DEP (km)	226 and 219														
	Likely effect	(s) of SEP and	d DEP												
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	quality	ı	n-combination	n
	С	0	D	С	o	D	С	o	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	37														
Name of European Site:	Duinen Vliel	and													
Distance to SEP and DEP (km)	244 and 227														
	Likely effect	(s) of SEP and	I DEP												
Site Features	U	nderwater noi	se		nteractions (ir collision risk)		Change	es to prey ava	ilability	Chan	ges to water q	uality		In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	O	D	С	O	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	38														
Name of European Site:	Dünenla	ndschaft Süd	-Sylt SAC												
Distance to SEP and DEP (km)	494 and	476													
	Likely et	ffect(s) of SEI	P and DEP												
Site Features		Underwater i	noise		nteractions (ir collision risk)		Chang	es to prey ava	ilability	Chan	iges to water q	_l uality		In-combination	1
	С	0	D	С	О	D	С	0	D	С	0	D	С	0	D

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	39
Name of European Site:	Dunes De La Plaine Maritime Flamande SAC

Page 41 of 108

Rev. no.1B

Distance to SEP and DEP (km)	234 and	d 237																			
Marine Mammals	,																				
	Likely e	effect(s)	of SEP and	I DEP																	
Site Features		Under	water nois	se	Ve		actions (i		CI	nanges to	prey ava	ilability		Change	es to water	quality			In-comb	oination	
	С		0	D	(0	D	C	;	0	D	С		0		D	С		0	D
Harbour seal	N(a)	N(a)	N(a)	N	(a)	N(a)	N(a)	N(a	a)	N(a)	N(a)	N(a	1)		N	l(a)	N(a)	N	l(a)	N(a)
Benthic Habitats		'		'	'			•		'				,		'			'	'	
Site Features	Perma	inent / lo	ong term	_	orary phy bance / h			sed susp		cc	nobilisatio Intaminato Sediments	ed		water nois			cts on bed ment trans		ln-	combina	tion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)		N (b)		N (b)	N (b)	N (b)
Mudflats and sandflats not covered by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)		N (b)		N (b)	N (b)	N (b)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

b) Outside potential ZoI (Section 4.2 of the HRA Screening Report).

Site	40															
Name of European Site:	Dunes de l'A	uthie et Molli	ères de Berck													
Distance to SEP and DEP (km)	299 and 306	99 and 306														
	Likely effect	likely effect(s) of SEP and DEP														
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	nilability	Chan	ges to water o	quality	lı	n-combinatior	1	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	

equinor 🔭

Rev. no.1B

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	41											
Name of European Site:	East Caithnes	s Cliffs SPA										
Distance to SEP and DEP (km)	620 and 610											
Site Features	Likely effect(s) of SEP and DE Collision Risk		Displ	acement/Disturl	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features cormorant, razorbill, shag, and great black-backed gull		N (a)			N (a)			N (a)			N (a)	
Breeding kittiwake, guillemot, and razorbill		Y (b)			Y (b)			Y (b)			Y (b)	
Breeding herring gull		N (c)			N (c)			N (c)			N (c)	

- a) SEP and DEP are beyond the maximum foraging ranges of breeding seabirds except fulmar and kittiwake (**Table 7-4** of the **HRA Screening Report**). Other than fulmar and kittiwake, no impact pathway exists for the qualifying features of this SPA during the breeding season. They are therefore screened out. Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out. Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out.
- b) Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Guillemot: Approximately 15.1% of birds present during non-breeding season.
 - Razorbill: Approximately 7.1% of birds present during autumn and spring migrations, and 4.3% of birds present during winter.
 - Herring gull: Approximately 2.9% of birds present during non-breeding season.
 - Kittiwake: Approximately 9.3% of birds present during autumn migration and 11.1% during spring migration.
 - Shag: Not present during non-breeding season.
 - Great black-backed gull: Approximately 0.9% of birds present during non-breeding season.
 - Cormorant: Not present during the non-breeding season.
 - Fulmar: Approximately 4.4% of birds present during autumn and spring migration seasons.

The proportions of kittiwake (relevant to collision risk impacts), guillemot and razorbill (relevant to displacement impacts) predicted to be present in the SEP and DEP survey area outside the breeding season are sufficiently large for LSE to be considered a possibility; therefore, these qualifying features are screened in.

c) Herring gull is screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP.

Site	42											
Name of European Site:	East Mainland	Coast, Shetland _I	SPA									
Distance to SEP and DEP (km)	780 and 770											
	Likely effect(s)	of SEP and DEP										
Name of European Site: Distance to SEP and DEP (km) Site Features Non-breeding migratory waterbird assemblage including as named features great northern diver and Slavonian grebe Breeding red-throated		Collision Risk		Disp	lacement/Disturb	pance		Barrier Effect			In-combination	
	С	o	D	С	o	D	С	o	D	С	o	D
Non-breeding migratory waterbird assemblage including as named features great northern diver and Slavonian grebe		N(a)			N(a)			N(a)			N(a)	
Breeding red-throated diver		Y(b)			Y(b)			Y(b)			Y(b)	

- a) SEP and DEP are beyond the maximum foraging range of breeding red-throated diver at this SPA (Table 7-4 of the HRA Screening Report). There is no impact pathway for these species during the breeding season and it is screened out. Great northern diver and Slavonian grebe were not recorded within the SEP and DEP survey area. There is therefore no impact pathway and these qualifying features can be screened out. Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying waterfowl species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in LSE. These qualifying features are therefore screened out.
- b) Outside the breeding season, the proportions of red-throated divers presumed to be present at SEP and DEP that are from this SPA (according to the wider relevant BDMPS of Furness (2015)) are large enough (7.8% during the winter, and 3.1% during autumn and spring migration seasons) for LSE to be possible. This qualifying feature is therefore screened in.

Site	43															
Name of European Site:	Estuaire De	La Canche, D	unes Picardes	Plaquees Su	r L'ancienne F	alaise, Foret I	D'hardelot Et l	Falaise D'equil	hen SAC							
Distance to SEP and DEP (km)	266 and 273															
	Likely effect	(s) of SEP an	d DEP													
Site Features	Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality In-combination													n		
	С	0	D	С	О	D	С	0	D	С	О	D	С	O	D	
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Rev. no.1B

Site	44														
Name of European Site:	Estuaire de l	a Seine SCI													
Distance to SEP and DEP (km)	404 and 413														
	Likely effect	(s) of SEP and	I DEP												
Site Features	Uı	Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality In-combination													
	С	0	D	С	O	D	С	0	D	С	О	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	45
Name of European Site:	Estuaires et littoral picards (baies de Somme et d'Authie) SAC
Distance to SEP and DEP (km)	300 and 307

Marine Mammals

	Likely effect	(s) of SEP and	DEP												
Site Features	Underwater noise		se		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chan	ges to water q	uality	ı	n-combination	1
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Bottlenose dolphin	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Fish	

Likely e	ffect(s)	of SEP	and	DEP
----------	----------	--------	-----	-----

Site	Permanent / long term	Temporary physical	Increased suspended	Re- mobilisation of	Underwater noise and	Impacts on commercially	
Features	loss	disturbance / habitat loss	sediment and sediment	contaminated sediments	vibration	exploited species	In-combination
			re-deposition			associated with their	

equinor ***

Rev. no.1B

																-	displacement from the area of activity / works				
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
River lamprey	N (b)	N (b)	N (b)	N (b)	N (b)																

- a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).
- b) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE.

Site	46											
Name of European Site:	Fair Isle SPA											
Distance to SEP and DEP (km)	720 and 710											
	Likely effect(s) of SEP and [DEP									
Site Features		Collision Risk		Displa	acement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features Arctic skua, gannet, great skua, puffin, razorbill, Arctic tern, shag		N (a)			N (a)			N (a)			N (a)	
Breeding fulmar and kittiwake		N (a)			N (a)			N (a)			N (a)	
Breeding guillemot		Y (b)			Y (b)			Y (b)			Y (b)	

- a) SEP and DEP are beyond the maximum foraging range of all breeding seabirds included as qualifying features of this SPA except fulmar and kittiwake (Table 7-4 of the HRA Screening Report). For all other qualifying features, no impact pathway exists during the breeding season; therefore, they are screened out. Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out. Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP. Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Arctic tern: Approximately <0.1% of birds present during autumn and spring migration seasons.
 - Guillemot: Approximately 1.9% of birds present during non-breeding season.
 - Puffin: Approximately 1.6% of birds present during non-breeding season.
 - Razorbill: Approximately 0.5% of birds present during autumn and spring migration seasons, and 0.3% of birds present during winter season.
 - Kittiwake: Approximately 0.2% of birds present during autumn and spring migration seasons.
 - Great skua: Approximately 2.6% of birds present during autumn migration season and 0% of birds present during spring migration season.
 - Arctic skua: Approximately 0.2% of birds present during autumn migration season and 0% of birds present during spring migration season.
 - Shag: Not present during non-breeding season.
 - Gannet: Approximately 2.5% of birds present during autumn migration season and 3.2% of birds present during spring migration season.
 - Fulmar: Approximately 8.6% of birds present during autumn and spring migration seasons.

Rev. no.1B

These proportions are considered sufficiently small for Arctic tern to be screened out at these times of year. Whilst an impact pathway has been identified, predicted proportions of birds present at SEP and DEP originating from this SPA are very low, so LSE can be ruled out and these qualifying features are screened out.

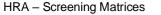
b) The proportion of guillemot predicted to be present in the SEP and DEP survey area at particular times of year is sufficiently large for LSE to be considered a possibility; therefore these qualifying features are screened in.

Site	47											
Name of European Site:	Falaise du Bess	sin Occidental	SPA									
Distance to SEP and DEP (km)	441 and 450											
	Likely effect(s)	of SEP and DE	P									
Site Features		Collision Risk		Displ	acement/Distur	hance		Barrier Effect			In-combination	
				p.	acciiiciiq 2 ictai	Julioc		Darrier Lilect			III-combination	
	С	0	D	С	0	D	С	O O	D	С	0	D

a) SEP and DEP are beyond the maximum foraging range of all breeding seabirds that are qualifying features of this SPA, and beyond the maximum foraging range of all species except fulmar (**Table 7-4** of the **HRA Screening Report**). Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). The proportions of the SPA population migrating through SEP and DEP outside the breeding season are expected to be small compared with the wider BDMPS (Furness, 2015). On this basis, all qualifying features are screened out.

Site	48																				
Name of European Site:	Falaises	du Cran	aux Oeuf	s et du Ca	ap Gris-N	ez, Dun	es du Cha	telet, Marai	s de Tardi	ngher	n et Dune	s de Wis	sant SA	VC							
Distance to SEP and DEP (km)	244 and 2	250																			
Marine Mammals																					
Site Features	Likely effe		SEP and		Ves		ractions (i	increased	Cha	nges	to prey a	vailabilit	у	Chang	es to wat	er qualit	у		In-combir	ation	
	С		0	D	С	;	0	D	С		0)	С	0		D	С	0		D
Harbour porpoise	N(a)		N(a)	N(a)	N(a	a)	N(a)	N(a)	N(a))	N(a)	N(a)	N(a)		ı	N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a	a)	N(a)		N	l(a)	N(a)	N(a)		N(a)
Harbour seal	N(a)	N	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a	a)	N(a)		N	l(a)	N(a)	N(a)		N(a)
Bottlenose dolphin	N(a)	N	N(a)	N(a)	N(a	1)	N(a)	N(a)	N(a)		N(a)	N(a	a)	N(a)		N	l(a)	N(a)	N(a)		N(a)
Benthic Habitats																					
Site Features		ent / long			orary phy bance / h loss			sed susper sediment	nded	CO	nobilisationtaminat sediments	ed	Unde	erwater noi vibratior			cts on be ment tran		In-co	ombinati	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B


| Sandbanks which are slightly covered by sea water all the time | N (b) | N
(b) |
|--|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Mudflats and sandflats not covered by seawater at low tide | N (b) | N
(b) |
| Reefs | N (b) | N
(b) |

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Section 6.1.2.1 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.
- b) Outside potential ZoI (see Section 4.2 of the HRA Screening Report).

Site	49														
Name of European Site:	Faray and H	lolm of Faray	SAC												
Distance to SEP and DEP (km)	705 and 696	;													
	Likely effect	t(s) of SEP an	d DEP												
Site Features	Underwate	er noise		Vessel Inte	ractions (inc	reased	Changes to	o prey availab	ility	Changes to	o water quality	y	In-combina	ation	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	50											
Name of European Site:	Farne Islands S	SPA										
Distance to SEP and DEP (km)	318 and 310											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	oance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Roseate Tern		N (a)			N (a)			N (a)			N (b)	
Common tern		N (b)			N (b)			N (b)			N (b)	

Rev. no.1B

Breeding Arctic tern, Sandwich tern	Y (c)		Y (c)		Y (c)		Y (c)	
Guillemot, Puffin	Y (c)		Y (c)		Y (c)		Y (c)	
Seabird Assemblage	Y (d)		Y (d)		Y (d)		Y (d)	

- a) Roseate tern has not been recorded at SEP and DEP, meaning that there is no impact pathway for this species. It is therefore screened out.
- b) Predicted proportions of birds present at DEP and SEP originating from this SPA are very low, so LSE can be ruled out and this qualifying feature screened out during migration periods.
- c) SEP and DEP are beyond the maximum foraging range of breeding Sandwich tern, common tern and Arctic tern (Table 7-4 of the HRA Screening Report). There is therefore no impact pathway for these qualifying features during the breeding season, and they are screened out. SEP and DEP are beyond the mean maximum foraging range of guillemot, but just within the maximum published foraging range. Due to the distance between SEP and DEP and this SPA, and parapatric competition between guillemot from the Flamborough and Filey Coast SPA (Wakefield et al., 2017) it is highly unlikely that substantial numbers of breeding birds from this SPA would regularly forage at SEP or DEP during the breeding season. On that basis, the impact pathway is not considered to have the potential to represent LSE, and the qualifying feature is screened out. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Arctic tern: Approximately 3.3% of birds present during autumn and spring migrations.
 - Common tern: Approximately 0.1% of birds present during autumn and spring migrations.
 - Sandwich tern: Approximately 6.2% of birds present during autumn and spring migrations.
 - Guillemot: Approximately 6.2% of birds present during the non-breeding season.

These proportions are all considered sufficiently large for these qualifying features to be screened in at these times of year

- d) Regarding assemblage features, the proportions of birds present at SEP and DEP that are from this SPA are predicted by Furness. (2015) to be as follows:
 - Kittiwake: Approximately 0.7% of birds present during the autumn migration, and 1.0% during the spring migration.
 - Puffin: Approximately 17.9% of birds present during the non-breeding season.
 - The proportion of birds predicted to be present during the non-breeding season that are sufficiently high for the assemblage to be screened in.

Site	51
Name of European Site:	Firth of Tay & Eden Estuary SPA & Ramsar & SAC
Distance to SEP and DEP (km)	430 and 420

Offshore Ornithology

	Likely effect(s) o	f SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	C	0	D	С	0	D
Non-breeding migratory waterbird assemblage		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)
Breeding marsh harrier		N (b)		N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)
Breeding little tern		N (c)		N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)	N (c)

- a) Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying waterfowl species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in LSE. These qualifying features are therefore screened out.
- b) Marsh harrier was not recorded during the baseline surveys of SEP and DEP. The presence of marsh harrier will be highly sporadic at most during passage periods, and would result in negligible numbers of birds from this passing through SEP and DEP. Marsh harrier is not anticipated at SEP and DEP during the breeding season due to their habitat preferences, and is therefore screened out.

Rev. no.1B

c) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.

Site	52														
Name of European Site:	Firth of Tay	y & Eden Estu	ary SAC												
Distance to SEP and DEP (km)	426 and 42	0													
	Likely effect	ct(s) of SEP a	nd DEP												
Site Features	Ur	nderwater noi	se		nteractions (i collision risk		Change	s to prey ava	ailability	Chan	ges to water	quality	lı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	53											
Name of European Site:	Flamborough a	and Filey Coast S	SPA									
Distance to SEP and DEP (km)	122 and 116											
	Likely effect(s) of SEP and DEI	P									
Site Features		Collision Risk		Displ	lacement/Disturb	oance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding kittiwake		Y (a)			N (b)			N (b)			Y (a)	
Breeding gannet		Y (a)			Y (a)			Y (a)			Y (a)	
Breeding guillemot		Y (a)			Y (a)			Y (a)			Y (a)	
Breeding razorbill		Y (a)			Y (a)			Y (a)			Y (a)	
Seabird assemblage		<u>Y</u> N (c)			<u>Y</u> N (c)			<u>Y</u> N (c)			<u>Y</u> N (c)	

- a) Mean maximum and/or maximum foraging ranges indicate that breeding gannet, guillemot, kittiwake and razorbill may forage at SEP and DEP. There is therefore an impact pathway, and these qualifying features are screened in.
- b) Kittiwakes are not considered to be at risk of disturbance and displacement or barrier effects at offshore wind farms therefore LSE can be ruled out.
- c) At the DCO application stages, the Applicant considered that Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They and could therefore be susceptible to a range of impact pathways. However, it is was not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur based on the proportions presented in Table-7-5 of the HRA Screening Report for this site. Therefore, they are were originally screened out. However, following a request from Natural England [RR-063] to screen in and assess the potential effects on the seabird assemblage feature, this screening matrix table has been amended to screen in the assemblage feature and an assessment has been provided in the Apportioning and HRA Updates Technical Note (Revision B) [REP2-037].

Site	54
Name of European Site:	Forth Islands SPA
Distance to SEP and DEP (km)	390 and 390
Site Features	Likely effect(s) of SEP and DEP

Rev. no.1B

		Collision Risk	•	Displa	cement/Distu	bance		Barrier Effect			In-combination	on
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding roseate tern, Sandwich tern, Arctic tern, fulmar and shag		N (a)			N (a)			N (a)			N (a)	
Breeding gannet		N (b)			N (b)			N (b)			N (b)	
Breeding lesser black backed gull		N (c)			N (c)			N (c)			N (c)	
Breeding puffin		N (d)			N (d)			N (d)			N (d)	
Breeding seabird assemblage including as named features, kittiwake, guillemot, razorbill, , common tern, cormorant, herring gull,		N (e)			N (e)			N (e)			N (e)	
Non-breeding gannet, lesser black-backed gull, puffin		Y (f)			Y (f)			Y (f)			Y (f)	

- a) SEP and DEP are beyond the maximum foraging range of these breeding seabird species at this SPA (Table 7-4 of the HRA Screening Report). There is no impact pathway for these qualifying features during the breeding season, and they are therefore screened out..
- b) Breeding adult gannets from this SPA are beyond the mean maximum foraging range for this species from SEP and DEP but within the mean-maximum (plus one standard deviation) and maximum recorded foraging ranges. However, data presented by Wakefield et al. (2013) indicate that gannets breeding at the Forth Islands SPA are unlikely to occur within SEP and DEP during the breeding season, due to the distance from SEP and DEP and the fact that the foraging ranges of gannets from different breeding colonies tend not to overlap (the assumption therefore is that 100% of foraging breeding adult birds present at SEP and DEP during the breeding season are from the Flamborough and Filey Coast SPA). No impacts during the breeding season due to SEP and DEP are therefore apportioned to birds breeding at Forth Islands SPA.
- c) SEP and DEP are beyond the mean maximum foraging range plus one standard deviation of breeding adult lesser black-backed gull from the Forth Islands SPA. Whilst they are within the maximum foraging range, this measurement is considered to be a poor indicator of typical foraging behaviour. It would be expected that few birds or foraging trips will occur at this distance from the colony, and even fewer with any regularity. As a result, no impacts on this qualifying feature due to SEP and DEP are predicted during the breeding season
- d) Puffins from this SPA are beyond the mean maximum foraging range plus one standard deviation for this species, but within the maximum recorded foraging range for this species. However, this measurement is considered to be a poor indicator of typical foraging behaviour. It would be expected that few birds or foraging trips will occur at this distance from the colony. No impacts during the breeding season due to SEP and DEP are therefore apportioned to birds breeding at this colony.
- e) SEP and DEP are beyond the maximum foraging range of these seabird species at this SPA (Table 7-4 of the HRA Screening Report). There is no impact pathway for these qualifying features during the breeding season, and they are therefore screened out.
- f) Gannet, lesser black-backed gull and puffin from this SPA are screened in outside the breeding season as proportions predicted to be present at SEP and DEP that are from this SPA are considered sufficiently large for LSE to be possible.

Site	55											
Name of European Site:	Foula SPA											
Distance to SEP and DEP (km)	785 and 775											
	Likely effec	t(s) of SEP an	d DEP									
Site Features		Collision Risk	(Displ	acement/Distu	rbance		Barrier Effect			In-combination	
Site reatures	С	0	D	С	0	D	С	0	D	С	0	D
Breeding guillemot					Y (a)		Ì	Y (a)			Y (a)	
Breeding puffin					Y (a)			Y (a)			Y (a)	
Breeding red-throated diver					Y (a)			Y (a)			Y (a)	
Breeding Arctic tern		N (b)			N (b)			N (b)			N (b)	
Breeding Leach's storm-petrel		N (b)			N (b)			N (b)			N (b)	
Breeding great skua		N (b)			N (b)			N (b)			N (b)	
Breeding shag		N (b)			N (b)			N (b)			N (b)	

Rev. no.1B

Breeding seabird assemblage (kittiwake, razorbill, Arctic skua, fulmar, puffin)

N (b)

N (b)

- a) The proportions of guillemot and puffin during the non-breeding season and red-throated diver in the migration seasons are considered sufficiently large for this species to be screened in.
- b) Whilst an impact pathway may exist, the number of birds realistically anticipated to be present at SEP and DEP means that LSE can be ruled out. They are therefore screened out.
- c) Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out.

Site	56											
Name of European Site:	Fowlsh	eugh SPA										
Distance to SEP and DEP (km)	460 and	l 450										
	Likely effect(s) of SEP and DE	P									
Site Features		Collision Risk		Disp	lacement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage												
including as named features		N (a)			N (a)			N (a)			N (b)	
fulmar, razorbill, herring gull												
Non-breeding guillemot, kittiwake		Y (b)			Y (b)			Y (b)			Y (b)	

- a) SEP and DEP are beyond the maximum foraging ranges of guillemot, razorbill and herring gull from this SPA and beyond the mean maximum but within the maximum foraging range of kittiwake and fulmar (Table 7-4 of the HRA Screening Report). There is no impact pathway for guillemot, razorbill and herring gull from this SPA during the breeding season, which are therefore screened out. Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore whilst an impact pathway exists, these qualifying features are screened out. Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP, particularly since this is an assemblage species. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Guillemot: Approximately 4.9% of birds present during the non-breeding season.
 - Kittiwake: Approximately 2.1% of birds present during the autumn migration season and 2.6% of birds present during the spring migration.
 - Razorbill: Approximately 2.0% of birds present during the autumn and spring migration seasons, and 1.2% during the winter.
 - Fulmar: Approximately 0.1% of birds present during the autumn and spring migration seasons.
 - Herring gull: Approximately 0.2% of birds present during the non-breeding season.

These proportions are considered sufficiently small for Arctic tern to be screened out at these times of year. Whilst an impact pathway has been identified, predicted proportions of these qualifying features birds present at SEP and DEP originating from this SPA are very low, so LSE can be ruled out. Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore they are screened out.

b) Guillemot and kittiwake from this SPA are screened in outside the breeding season as proportions predicted to be present at SEP and DEP that are from this SPA are considered sufficiently large for LSE to be possible.

Site	57											
Name of European Site:	Gibraltar Point	SPA and Ramsa	r									
Distance to SEP and DEP (km)	46.4 and 61.2											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Distu	urbance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B

Non-breeding migratory waterbird features	Y (a)	Y (a)	Y (a)	Y (a)	
Breeding little tern	N (b)	N (b)	N (b)	N (b)	

- a) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.
- b) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.

Site	58											
Name of European Site:	Great Yarmouth	n and North Dene	es SPA									
Distance to SEP and DEP (km)	44.9											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturl	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding little tern		N (a)			N (a)			N (a)			N (a)	

a) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.

Site		59										
Name of European Site:		Greater Wash	sPA									
Distance to SEP and DEP (km)		7 and 16.6										
	Likely effect	(s) of SEP and	DEP									
Site Features		Collision Risk	(Displa	cement/Distu	rbance		Barrier Effect		l	In-combination	n
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabirds (common tern, Sandwich tern)		Y (a)			Y (a)			Y (a)			Y (a)	
Little tern		N (b)										
Nonbreeding red-throated diver				Y (c)	Y (c)			Y (c)		Y (c)	Y (c)	
Nonbreeding little gull		Y (d)									Y (d)	
Common Scoter				<u>N (e)</u>	<u>N (e)</u>			<u>N (e)</u>		<u>N (e)</u>	<u>N (e)</u>	

- a) Common tern and Sandwich tern have been recorded at SEP and DEP. During the breeding season these qualifying features may be at risk of collision—and potentially displacement in the case of Sandwich tern, and are therefore both screened in. Sandwich tern is also screened in during the non-breeding season due to sufficiently large proportions of Sandwich tern present at these times of year (Table 7-5 of the HRA Screening Report).
- b) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out
- c) SEP is within 10km of the SPA and therefore an impact pathway exists due to potential displacement of red-throated diver within the SPA. This qualifying feature is therefore screened in. Following advice from Natural England it is considered that Operations and Maintenance vessels may disturb red-throated divers whilst transiting through the SPA therefore an LSE cannot be screened out (Table 7-5 of the HRA Screening Report).

d) There is possible operational collision risk to non-breeding little gull, which have been recorded at SEP and DEP and are expected to be associated with this SPA. This qualifying feature is therefore screened in. It is not present outside the non-breeding season, therefore it is screened out during this time of year (Table 7-5 of the HRA Screening Report).

estimates presented in Lawson et al. (2016) confirm that the main concentrations of common scoter occur around the mouth of the Wash, approximately 20km from SEP (and further from DEP), with effectively zero density both within the wind farm sites and along potential vessel transit routes (both during the construction/decommissioning and O&M phases of the Projects). It can therefore be concluded that there is no likelihood of a significant adverse effect on this feature, alone or in-combination, and it is screened out.

Site	60														
Name of European Site:	Grevelinger	n SAC													
Distance to SEP and DEP (km)	229 and 222	:													
	Likely effec	t(s) of SEP a	nd DEP												
Site Features	Ur	nderwater no	ise		nteractions (ir collision risk)		Change	es to prey ava	ailability	Chang	ges to water o	quality	In	-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey Seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour Seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	61														
Name of European Site:	Gule Re	v SCI													
Distance to SEP and DEP (km)	621 and	598													
	Likely e	ffect(s) of SEP	and DEP												
Site Features		Underwater n	oise		nteractions (ir collision risk)		Change	es to prey ava	ailability	Chan	ges to water q	uality	ı	In-combination	1
	С	0	D	С	o	D	С	0	D	С	O	D	С	O	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

b) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report).

Site	62														
Name of European Site:	Gullmarsfjor	den SAC													
Distance to SEP and DEP (km)	844 and 821														
	Likely effect	(s) of SEP and	I DEP												
		Underwater noise Vessel Interactions (increased collision risk) Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality In-combination													
Site Features	Uı	nderwater noi	se				Change	es to prey ava	ilability	Chan	ges to water o	uality		In-combinatio	n
Site Features	C	nderwater noi:	se D				Change C	es to prey ava	ilability D	Chan C	ges to water o	uality D	С	In-combination O	n D

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	63																				
Name of European Site:	Haisbor	ough, Ha	mmond ar	nd Winter	ton SAC																
Distance to SEP and DEP (km)	20.7 and	d 17.3																			
	Likely e	ffect(s) of	f SEP and	DEP																	
Site Features	Perma	nent / Ion Ioss	ng term	_	oorary phy ance / hab		Increa	sed susp			nobilisatio			water noi vibration			ts on bed		In-	combinat	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)		N(a)		N(a)		N(a)	N(a)	N(a)
Reefs	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)		N(a)		N(a)		N(a)	N(a)	N(a)

Site	64
Name of European Site:	Hallands Väderö
Distance to SEP and DEP (km)	812 and 792
Site Features	Likely effect(s) of SEP and DEP

Status: Final Classification: Open

Rev. no.1B

	Ur	nderwater noi	se		nteractions (ir collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	65														
Name of European Site:	Hamburgisc	hes Wattenm	eer SCI												
Distance to SEP and DEP (km)	469 and 451														
	Likely effect	(s) of SEP an	nd DEP												
Site Features	Ur	Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality In-combination													
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

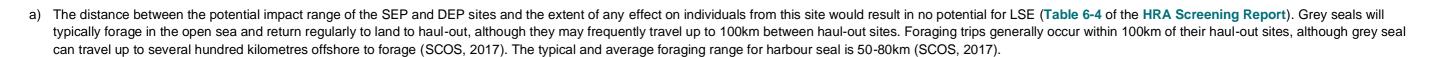
a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site		66															
Name of European S	Site:	Haringvliet SAC															
Distance to SEP and	I DEP (km)	233 and 225															
	Likely effect(s) of SEP and	DEP															
Site Features	Permanent / long term habitat loss	Temporary physical disturbance / habitat loss	sedim	ased susp ent and se e-deposition	diment		mobilisatio contaminat sediment	ed	Unde	water noi		comm specie their d	Impacts of ercially ex s associat isplaceme area of act works	ploited ed with ent from	ln-	-combinati	on
	COD	COD	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B

| River lamprey | N (a) |
|-----------------|
| Sea lamprey | N (a) |
| Atlantic salmon | N (a) |
| Allis shad | N (a) |
| Twaite shad | N (a) |

a) The distance between the Projects and the site precludes direct impact upon the site and its supporting habitats. Fish associated with the SAC could in theory be present in the vicinity of SEP and DEP but given the distance of the Projects they would be present in low numbers. The absence of designated sites for these species on the UK Southern North Sea coast reflects the lower importance of the area to these species.


Site	67														
Name of European Site:	Havet og ky	sten mellem F	Præstø Fjord o	g Grønsund (SAC										
Distance to SEP and DEP (km)	730 and 712														
	Likely effect	t(s) of SEP an	s) of SEP and DEP												
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Chang	es to prey ava	ailability	Chan	ges to water o	quality		In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017) (Table 6-4 of the HRA Screening Report).

Site	68														
Name of European Site:	Havet omkri	ng Nordre Rø	nner SAC												
Distance to SEP and DEP (km)	788.1														
	Likely effect	(s) of SEP and	d DEP												
Site Features	U	nderwater No	ise		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chan	iges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Site	69														
Name of European Site:	Helgoland m	nit Helgoländer	Felssockel SA	C											
Distance to SEP and DEP (km)	447 and 429														
	Likely effect	(s) of SEP and	DEP							,					
Site Features	ι	Jnderwater noi	ise		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chai	nges to water o	quality		In-combination	n
	С	О	D	С	o	D	С	o	D	С	0	D	С	O	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site	70											
Name of European Site:	Hermaness,	Saxa Vord and V	alla Field SPA									
Distance to SEP and DEP (km)	840 and 830											
	Likely effect(s) of SEP and D	EP									
Site Features		Collision Risk		Displ	acement/Disturl	oance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding great skua		N (a)			N (a)			N (a)			N (a)	
Breeding fulmar		N (b)			N (b)			N (b)			N (b)	
Breeding seabird assemblage including as named features gannet, guillemot, red-throated diver, puffin, kittiwake, shag		N (c)			N (c)			N (c)			N (c)	
Non-breeding gannet and great skua		Y (d)			Y (d)			Y (d)			Y (d)	

- a) Great skua was not recorded at SEP and DEP during the breeding season; there is therefore no impact pathway, and this qualifying feature can therefore be screened out.
- b) SEP and DEP are within the maximum foraging range of fulmar. However, breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP.
- c) SEP and DEP are beyond the mean maximum foraging range of all breeding seabirds that are qualifying features of this SPA, and beyond the maximum foraging range of all species except fulmar (**Table 7-4** of the **HRA Screening Report**). With the exception of fulmar, all other qualifying features can be screened out during the breeding season as there is no impact pathway. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Gannet: Approximately 15.5% of birds present during autumn migration, and 20.1% of birds during spring migration.
 - Great skua: Approximately 4.9% of birds present during autumn migration, and 0% of birds present during winter.
 - Puffin: Approximately 0.1% of birds present during the non-breeding season.
 - Fulmar: Approximately 2.0% of birds present during the autumn and spring migration seasons.
 - · Shag: Not present during non-breeding season.
 - Guillemot: Approximately 0.7% of birds present during the non-breeding season.
 - Kittiwake: Approximately 0.1% of birds present during the autumn and spring migration seasons.

With respect to puffin, proportions of birds predicted to occur at SEP and DEP outside the breeding season are very small. Therefore, whilst an impact pathway exists, it is not considered that sufficient numbers of birds could be impacted to result in LSE. This qualifying feature is screened out. Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out.

d) The proportions of gannet and great skua are considered sufficiently large for this species to be screened in at these times of year.

Site	71														
Name of European Site:	Hesselø med	l omliggende s	stenrev SAC												
Distance to SEP and DEP (km)	750 and 730														
	Likely effect(s) of SEP and	DEP												
Site Features	U	nderwater noi	se		nteractions (ir collision risk)		Chang	es to prey ava	ilability	Char	iges to water q	uality		In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	72
Name of European Site:	Hirsholmene, havet vest herfor og Ellinge Å's udløb SAC
Distance to SEP and DEP (km)	752 and 729

Page 59 of 108

Rev. no.1B

	Likely effec	t(s) of SEP a	nd DEP												
Site Features	Uı	nderwater no	ise		nteractions (in collision risk)		Change	es to prey ava	ailability	Chang	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	73											
Name of European Site:	Hornsea Mere	SPA										
Distance to SEP and DEP (km)	112 and 110											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	acement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Nonbreeding gadwall, mute swan		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

a) Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying bird species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in impacts substantial enough to result in LSE. These qualifying features are therefore screened out.

Site	74											
Name of European Site:	Hoy SPA											
Distance to SEP and DEP (km)	670 and 660											
	Likely effect(s	of SEP and DE	P				ı			ı		
Site Features		Collision Risk		Displa	acement/Disturl	oance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features Arctic skua, great black-backed gull, guillemot, kittiwake, red-throated diver, fulmar, puffin, great skua		N (a)			N (a)			N (a)			N (a)	
Non-breeding red-throated diver		Y (b)			Y (b)			Y (b)			Y (b)	

Rev. no.1B

- a) SEP and DEP are beyond the maximum foraging range of all breeding seabirds included as qualifying features of this SPA except kittiwake and great skua (Table 7-4 of the HRA Screening Report). As there is no impact pathway for red-throated diver, puffin, great black-backed gull or guillemot during the breeding season, these qualifying features are screened out. Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out. Great skua was not recorded within the SEP and DEP survey area during the breeding season. Therefore, there is no impact pathway and it is screened out. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Red-throated diver: Approximately 0.4% of birds present during autumn and spring migrations, and 1.4% of birds present during winter.
 - Great skua: Approximately 0% of birds present during autumn and spring migrations, and during winter.
 - Puffin: Approximately 0.5% of birds present during non-breeding season.
 - Kittiwake: Approximately 0.1% of birds present during autumn and spring migration.
 - Great black-backed gull: Approximately 0.3% of birds present during non-breeding season.
 - Guillemot: Approximately 0.9% of birds present during non-breeding season.

These proportions are considered sufficiently small for great skua to be screened out at these times of year. Whilst an impact pathway has been identified, predicted proportions of birds present at SEP and DEP originating from this SPA are very low, so LSE can be ruled out and these qualifying features are screened out. Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out.

b) The proportion of red-throated diver predicted to be present in the SEP and DEP survey area during winter is sufficiently large for LSE to be considered a possibility; therefore, this qualifying feature is screened in for this time of year. Impacts during the migration seasons are screened out as the proportion of birds predicted to be present is considered sufficiently low to rule out LSE.

Site	75																				
Name of European Site:	Humber	Estuary	SAC																		
Distance to SEP and DEP (km)	60 and 6	2.2																			
Marine Mammals																					
	Likely	effect(s)	of SEP a	nd DEP																	
Site Features	Under		oise and I ects	oarrier	colli seal	el Interac sion risk haul outs aging gro), disturb s, disturb	oance a	t	Chang	jes to wat	er quality	,	С	hanges to pre	y availability	,	I	n-combin	ation	
	С	0)	D	С		0	D		С	0		D	С	0		D	С	0		D
Grey seal	Y (a)	Υ (a)	Y (a)	Y (a)	Y	′ (a)	Y (a	a) '	Y (a)	Y (a)	Y	(a)	Y (a)	Y (a)	Y	(a)	Y (a)	N (d)	N (d)
Fish																					
Site Features	Perm	effect(s) nanent / l habitat		Tempo	orary phy pance / ha loss		sedii	ed sus ment ar epostic		С	mobilisati ontaminat sediment	ed	Und	derwater i vibrati	noise and ion	exploited with thei	s on commerce I species assort r displacement a of activity / v	ociated nt from	In-c	combina	ation
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea Lamprey	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
River lamprey	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
Benthic habitats	· '				,	,	,		,												
Site Features	Perma	nent / lo loss	ng term		nporary p turbance loss	/ habitat	In		d suspend diment	ded	con	obilisatio taminate ediments	d	Under	water noise a vibration		fects on bedleding		In-c	ombinat	tion
	С	0	D	С	0	D	С	;	0	D	С	0	D	С	0	D C	0	D	С	0	D

Rev. no.1B

| Estuaries | N (c) | N
(c) |
|--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| Mudflats and sandflats not covered by seawater at low tide | N (c) | N
(c) |
| Sandbanks which are slightly covered by sea water all the time | N (c) | N
(c) |
| Coastal lagoons | N (c) | N
(c) |

- a) There is potential for effects from underwater noise and barrier effects; vessel interactions; disturbance at seal haul-out sites, disturbance of foraging seals at sea; changes to water quality; and changes to prey availability. The incombination effects assessment assesses underwater noise impacts only (see Section 8.4.3.4 of the RIAA)
- b) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 5-2 of the HRA Screening Report).
- c) Outside potential ZoI (Table 4-2 of the HRA Screening Report).

Site	76											
Name of European Site:	Humber Estu	uary SPA and R	amsar									
Distance to SEP and DEP (km)	55.3 and 61.2	2										
	Likely effect	(s) of SEP and I	DEP									
Site Features		Collision Risk		Displ	acement/Distu	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding little tern		N (a)			N (a)			N (a)			N (a)	
Breeding bittern, marsh harrier and avocet		N (b)			N (b)			N (b)			N (b)	
Non-breeding migratory waterbird features		Y (c)			Y (c)			Y (c)			Y (c)	

- a) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.
- b) Other breeding birds named as qualifying features of this SPA are unlikely to utilise SEP or DEP due to their habitat preferences. There is no impact pathway for these species and they are therefore screened out.
- c) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.
- d) Any in-combination effects for offshore wind farms during operation and maintenance or decommissioning have been screened out of further assessment. See Sections 10.3.4.1.3, 10.3.4.1.4 and 10.3.4.1.5 of Appendix 10.3 Marine Mammals CIA Screening (document reference 6.3.10.3[APP-193]) for further information.

Site	77														
Name of European Site:	Hund und Paa	apsand SCI													
Distance to SEP and DEP (km)	376 and 359														
	Likely effect(s	s) of SEP and I	DEP												
Site Features	Underwate	r noise and ba	rrier effects		nteractions (i collision risk		Chang	es to prey ava	ilability	Chang	jes to water	quality		In-combination	1
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Page 62 of 108

Rev. no.1B

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

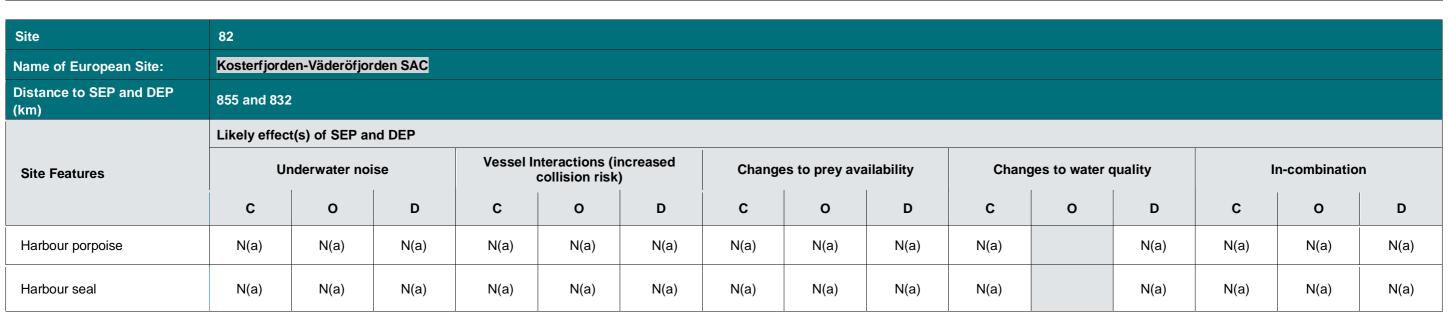
Site	78											
Name of European Site:	Imperial Dock	Lock, Leith SPA										
Distance to SEP and DEP (km)	410											
	Likely effect(s) of SEP and DEI	P									
Site Features						_	1					
Oile i caluics		Collision Risk		Displ	acement/Distur	bance		Barrier Effect			In-combination	
Oile i caluics	С	Collision Risk O	D	C	acement/Distur O	bance D	C	Barrier Effect O	D	С	In-combination O	D
Breeding common tern	С			1			C		D			

- a) SEP and DEP are beyond the maximum foraging range of breeding common terns from this SPA (Table 7-4 of the HRA Screening Report). There is no impact pathway and therefore this qualifying feature can be screened out.
- b) Outside the breeding season, approximately 1.2% of birds present at SEP and DEP are estimated by Furness. (2015) to be from this SPA. An impact pathway therefore exists, and this proportion is considered sufficiently large for LSE to be possible, so this qualifying feature is screened in.

Site	79																	
Name of European Site:	Inner Dow	sing, Race l	Bank and N	orth Ridge \$	SAC													
Distance to SEP and DEP (km)	2.2 and 10	.3																
	Likely effe	ect(s) of SEF	and DEP															
Site Features	Permane	nt / long teri loss	m habitat		porary physicance / habit		sediment	ased suspe concentrated deposition	tions and		mobilisatio		proce	nges to phys sses resulti to sedimen	ng in	In	n-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	SEP Y (b) DEP N (c)	SEP Y (b) DEP N (c)	SEP Y (b) DEP N (c)	N (a)		N (a)	N (a)	SEP Y (b) DEP N (c)	N (a)	SEP Y (b) DEP N (c)	SEP Y (b) DEP N (c)	SEP Y (b) DEP N (c)
Reefs	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)

- a) SEP and DEP are outside the ZoI and therefore are screened out.
- b) Natural England Conservation Advice for Inner Dowsing, Race Bank and North Ridge SAC suggests that the Annex I habitat feature 'Sandbanks which are slightly covered by sea water all the time' may be within the SEP ZOI from impacts on sediment transport, although the feature extent is further from SEP than the SAC boundary. Natural England's AoO states that water flow (tidal current) changes, including sediment transport is a high risk pressure from

offshore wind operation (presence of turbines). 'Sandbanks which are slightly covered by sea water all the time' are potentially sensitive to this pressure because one of its component habitats, subtidal mud, is sensitive to the pressure. However subtidal sand is assessed as not sensitive (Natural England, 2017a). Evidence suggests that a LSE on the SAC sandbanks feature is unlikely, but it cannot be entirely ruled out at this stage from SEP.


c) DEP is outside the ZoI and therefore a LSE on the site from DEP is screened out (see Figure 7.1 of the RIAA).

Site	80														
Name of European Site:	Isle of May S	SAC													
Distance to SEP and DEP (km)	401 and 395														
	Likely effect	(s) of SEP and	I DEP												
Site Features	U	nderwater noi	se		Interactions (in collision risk)		Change	es to prey ava	ailability	Chan	ges to water o	quality		In-combinatio	n
	С	О	D	С	О	D	С	О	D	С	О	D	С	О	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	81															
Name of European Site:	Klaverbank	SAC														
Distance to SEP and DEP (km)	134 and 114	4														
	Likely effec	ct(s) of SEP a	nd DEP													
Site Features	Ur	Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality In-combination														
	С	О	D	С	О	D	С	О	D	С	О	D	С	О	D	
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)	

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

83														
Kungsback	afjorden SAC													
824 and 801														
Likely effec	t(s) of SEP and	d DEP												
U	nderwater noi	se				Chang	es to prey ava	ailability	Chan	ges to water o	uality		In-combinatio	n
С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
	Kungsbacka 824 and 801 Likely effect U	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and Underwater noi C O	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise C O D	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise C O D C	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise C O D C O	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise C O D C O D	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise C O D C C C C C C C C C C C C	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) C O D C O D C O	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability C O D C O D C O D	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to Description Collision C	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water of COOODCOODCOOOCCOOOCCOOOCCOOOCCOOOCCOO	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality C O D C O D C O D	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality C O D C O D C	Kungsbackafjorden SAC 824 and 801 Likely effect(s) of SEP and DEP Underwater noise Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality In-combination C O D C O D C O D C O

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	84															
Name of European Site:	Küsten- und	und Dünenlandschaften Amrums SAC 474														
Distance to SEP and DEP (km)	491 and 474															
	Likely effect	(s) of SEP	and DEP													
Site Features	Un	derwater no	oise		nteractions (i collision risk		Change	es to prey av	ailability	Chang	es to water	quality	I	n-combinatio	n	
	С	0	D	С	О	D	С	0	D	С	0	D	С	0	D	

equinor ***

Rev. no.1B

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	85											
Name of European Site:	Littoral Seino	-Marin SPA										
Distance to SEP and DEP (km)	334 and 342											
	Likely effect(s	s) of SEP and D	EP									
Site Features		Collision Risk		Displ	acement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	О	D	С	О	D	С	О	D
Breeding seabirds including fulmar, shag, gannet, herring gull, great black-backed gull, kittiwake		N (a)			N (a)			N (a)			N (a)	
Nonbreeding winter and passage seabird assemblage including as named features red-throated diver, black-throated diver, great crested grebe, fulmar, gannet, cormorant, shag, pomarine skua, great skua, Mediterranean gull, little gull, lesser black-backed gull, herring gull, great black-backed gull, kittiwake, Sandwich tern, common tern, guillemot, razorbill		N (a)			N (a)			N (a)			N (a)	

a) SEP and DEP are beyond the maximum foraging range of all breeding seabird species at this SPA except for gannet. Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from the Flamborough and Filey Coast SPA (Wakefield et al., 2013), it is considered highly unlikely that breeding birds from this SPA would regularly forage at DEP or SEP during the breeding season.

Proportions of SPA seabird populations migrating through SEP and DEP outside the breeding season are expected to be small compared with the wider BDMPS (Furness, 2015).

On this basis, all qualifying features are screened out.

Site	86											
Name of European Site:	Loch of Strathl	peg SPA & Rams	sar									
Distance to SEP and DEP (km)	520 and 510											
	Likely effect(s)	of SEP and DEI	P									
Site Features		Collision Risk		Displ	acement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B

Wintering and passage waterbird assemblage including as named features greylag goose, pinkfooted goose, teal, Svalbard barnacle goose, whooper swan	N (a)		N (a)		N (a)		N (a)	
Breeding Sandwich tern	N (b)		N (b)		N (b)		N (b)	

- a) Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying waterfowl species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in LSE. These qualifying features are therefore screened out.
- b) SEP and DEP are beyond the maximum foraging range of breeding Sandwich tern from this SPA. There is therefore no impact pathway for this species during the breeding season and it is screened out. The proportion of the population migrating through SEP and DEP is 0% compared with the wider BDMPS (Furness, 2015), meaning that this species is screened out.

Site	87														
Name of European Site:	Løgstør Bre	dning, Vejleri	ne og Bulbjer	g SAC											
Distance to SEP and DEP (km)	729.9														
	Likely effec	t(s) of SEP ar	nd DEP												
Site Features	Ur	nderwater noi	ise		nteractions (ii collision risk)		Change	es to prey ava	ailability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	88														
Name of European Site:	Lovns Bred	lning, Hjarbæ	ek Fjord og S	kals, Simest	ed og Nørre	Ådal, Skravad	d Bæk SAC								
Distance to SEP and DEP (km)	638 and 61	5													
	Likely effec	ely effect(s) of SEP and DEP													
Site Features	Ur	Underwater noise Vessel Interactions (increased collision risk) Vessel Interactions (increased collision risk) Changes to prey availability Changes to water quality In-combination													
	С	0	D	С	0	D	С	0	D	С	О	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	89														
Name of European Site:	Malmöfjord	SAC													
Distance to SEP and DEP (km)	850 and 82	7													
	Likely effec	ct(s) of SEP a	nd DEP												
Site Features	U	nderwater no	ise		nteractions (i collision risk		Change	es to prey ava	ailability	Chang	ges to water	quality	lı	n-combinatio	on
	С	0	D	С	O	D	С	О	D	С	О	D	С	О	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	90														
Name of European Site:	Marais du C	Cotentin et du	ı Bessin - Ba	ie des Veys S	AC										
Distance to SEP and DEP (km)	432 and 445	5													
	Likely effec	t(s) of SEP a	nd DEP												
Site Features					nteractions (i collision risk		Change	es to prey ava	ailability	Chan	ges to water	quality	lı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	91
Name of European Site:	Marwick Head SPA
Distance to SEP and DEP (km)	710 and 700
Site Features	Likely effect(s) of SEP and DEP

Rev. no.1B

	Collision Risk			Displ	acement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features guillemot and kittiwake		N (a)			N (a)			N (a)			N (b)	
Non-breeding guillemot		Y (b)			Y (b)			Y (b)			Y (b)	

- a) SEP and DEP are beyond the maximum foraging range of guillemot (Table 6-4 of the HRA Screening Report). There is therefore no impact pathway for this species during the breeding season and it is screened out. SEP and DEP are within the maximum foraging range of kittiwake, so a potential impact pathway exists. However, due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Guillemot: 1.6%.of birds present during the non-breeding season.
 - Kittiwake: Approximately 0.1% of birds present during autumn and spring migration seasons.

These proportions are considered sufficiently small for kittiwake to be screened out at these times of year. Whilst an impact pathway has been identified, predicted proportions of birds present at SEP and DEP originating from this SPA are very low, so LSE can be ruled out and these qualifying features are screened out.

b) The proportion of guillemot predicted to be present in the SEP and DEP survey area during the non-breeding season is sufficiently large for LSE to be considered a possibility; therefore this qualifying feature is screened in.

Site	92														
Name of European Site:	Måseskär S	SAC													
Distance to SEP and DEP (km)	837 and 814	4													
	Likely effec	ct(s) of SEP a	nd DEP												
Site Features	Ur	nderwater no	ise		nteractions (i collision risk		Change	es to prey ava	ailability	Chang	ges to water (quality	lt	n-combinatio	n
	С	0	D	С	О	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017) (Table 6-4 of the HRA Screening Report).

Site	93			
Name of European Site:	Minsmere - Walberswick SPA and Ramsar			
Distance to SEP and DEP (km)	86.9 and 91.2			
Cita Factures	Likely effect(s) of SEP and DEP			
Site Features	Collision Risk	Displacement/Disturbance	Barrier Effect	In-combination

Rev. no.1B

	С	0	D	С	0	D	С	0	D	С	0	D
Non-breeding migratory waterbird features		Y (a)									Y (a)	
Breeding little tern		N (b)										
Nonbreeding hen harrier		N (c)										
Breeding bittern, marsh harrier, avocet, nightjar, and ducks		N (c)										

- a) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.
- b) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.
- c) The presence of other qualifying species from this SPA at the Projects will be sporadic at most during passage periods, and would result in negligible numbers passing through SEP and DEP. They are not anticipated at SEP and DEP during the breeding season due to their habitat preferences, and are therefore screened out.

Site	94														
Name of European Site:	Moray Firth	Moray Firth SAC													
Distance to SEP and DEP (km)	569 and 561														
Site Features		t(s) of SEP ar ater noise an effects			nteractions (i		Change	es to prey ava	ailability	Chan	ges to water o	quality		In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Bottlenose dolphin	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)		Y(a)	Y(a)	N(b)	N(b)

- a) During the HRA screening undertaken in April 2021, it was considered that no bottlenose dolphin designated sites had the potential for connectivity with the Projects, and therefore were not screened in for further assessment.

 However, since the HRA screening, there has been a recent increase in presence of the bottlenose dolphin along the north-east coast of England. Therefore, as a precautionary approach, it has been assumed that bottlenose dolphin off the east coast of England could be from the Moray Firth SAC and as such this designated site has been assessed further. The in-combination effects assessment assesses underwater noise impacts only (Section 8.4.2.4 of the RIAA)
- b) Any in-combination effects for offshore wind farms during operation and maintenance or decommissioning have been screened out of further assessment. See Sections 10.3.4.1.3, 10.3.4.1.4 and 10.3.4.1.5 of Appendix 10.3 Marine Mammals CIA Screening (document reference 6.3.10.3) [APP-193] for further information.

Site	95											
Name of European Site:	Mousa SPA											
Distance to SEP and DEP (km)	765 and 755											
	Likely effect(s) of SEP and I	DEP									
Site Features		Collision Risk			acement/Distur	bance		Barrier Effect		In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding Arctic tern		N (a)			N (a)			N (a)			N (a)	
Breeding European storm-petrel		N (b)			N (b)			N (b)			N (b)	

a) SEP and DEP are beyond the maximum foraging range of breeding Arctic tern from this SPA. There is therefore no impact pathway and this qualifying feature is screened out. Outside the breeding season, the proportion of Arctic tern present at SEP and DEP that are estimated by Furness (2015) to be from this SPA is approximately 0%. This qualifying feature is therefore screened out.

b) European storm petrel was not recorded at SEP and DEP during the baseline surveys. There is no impact pathway for this qualifying feature, and it is therefore screened out.

Site	96														
Name of European Site:	Mousa SAC	;													
Distance to SEP and DEP (km)	764 and 753	3													
	Likely effec	t(s) of SEP a	ind DEP												
Site Features	U	Underwater noise Vessel Interactions (increased collision risk)						es to prey av	ailability	Chan	ges to water o	quality	In-combination		
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

c) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	97														
Name of European Site:	Nationalpar	k Niedersäch	sisched Watt	enmeer SAC											
Distance to SEP and DEP (km)	357 and 339	ikely effect(s) of SEP and DEP													
	Likely effec														
Site Features	Uı	nderwater no	ise		nteractions (i collision risk		Change	s to prey ava	ailability	Chang	ges to water	quality	lı	n-combinatio	'n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site	98
Name of European Site:	Nene Washes SPA and Ramsar Site
Distance to SEP and DEP (km)	112 and 92.2

Rev. no.1B

	Likely effect(s) of SEP and DEP													
Site Features		Collision Risk		Disp	lacement/Disturl	bance		Barrier Effect			In-combination			
	С	0	D	С	0	D	С	0	D	С	0	D		
Non-breeding migratory waterbird features including Bewick's swan		Y (a)									Y (a)			

a) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.

Site	99												
Name of European Site:	Nibe Bredning, Halkær Ådal	og Sønderup	Ådal SAC										
Distance to SEP and DEP (km)	669 and 646												
	Likely effect(s) of SEP and D)FP											
	Likely check(3) of OLI and L	/ _!											
Site Features	Underwate			nteractions (in	Change	es to prey av	ailability	Chang	es to water	quality	In-c	ombination	n
Site Features			D		Change	es to prey ava	ailability D	Chang	es to water	quality D	In-c	ombinatio	n D

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	100														
Name of European Site:	Nidingen SAC														
Distance to SEP and DEP (km)	818 and 796														
	Likely effect(s) of SEP and DE	Р								,					
Site Features	Unde	rwater noise		Vessel Into	Change	s to prey av	ailability	Chan	ges to water	r quality	In-combination				
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report).

Rev. no.1B

Site 101

Name of European Site: Noordzeekustzone SAC

Distance to SEP and DEP (km) 221 and 205

Marine Mammals

	Likely effec	t(s) of SEP a	nd DEP												
Site Features	Un	nderwater no	ise	collision	nteractions (i risk) and dist seal haul out	urbance at	Change	es to prey ava	ailability	Chan	ges to water	quality	lı	n-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Grey seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Fish

	Likely eff	fect(s) of S	SEP and D	EP																	
Site Features		anent / Ion	_		porary phy ance / hab		sec	ased susp diment and deposition	l re-		nobilisatio			water nois		exp asso displa	s on commodicated speciated with acement from from the common of activity /	cies n their om the	In-	combinati	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea Lamprey	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
Allis Shad	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
Twaite Shad	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)

Benthic Habitats

Site Features	Perman	ent / long te	erm loss	_	porary phy ance / habi			ased suspent and re-de			mobilisatio		Unde	water nois	se and	In	-combination	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)
Mudflats and sandflats not covered by seawater at low tide	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)	N(c)

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report).
- b) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE.
- c) Outside potential ZoI (Section 4,2 of the HRA Screening Report).

Site	102														
Name of European Site:	Nordre älvs	estuarium SAC	l												
Distance to SEP and DEP (km)	835 and 811														
	Likely effect	(s) of SEP and	DEP												
Site Features	U	Inderwater noi	se		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chai	nges to water q	uality		In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
	<u> </u>				1	I	1					1	1		

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	103														
Name of European Site:	Nordvästra	Skånes havso	område SAC												
Distance to SEP and DEP (km)	781 and 761														
	Likely effec	t(s) of SEP an	d DEP												
Site Features	U	nderwater no	ise		nteractions (in collision risk)		Change	es to prey ava	ilability	Chang	ges to water	quality		n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	104			
Name of European Site:	Norfolk Valley Fens SAC			
Distance to SEP and DEP (km)	2.2 from onshore cable corridor area			
	Likely effect(s) of SEP and DEP			
Site Features	Direct effects upon habitats within the SAC boundary	Direct effects within ex-situ habitats of the SAC	Indirect effects (geology / contamination and groundwater / hydrology effects)	In-combination

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

	С	0	D	С	0	D	С	0	D	С	0	D
Alkaline fens	N (a)											

a) No overlap therefore no direct effect, and beyond the range of potential significant indirect effect (Table 3-3 of the HRA Screening Report).

Site	105											
Name of European Site:	North Caithnes	ss Cliffs SPA										
Distance to SEP and DEP (km)	650 and 640											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features, guillemot, razorbill, puffin		N (a)			N (a)			N (a)			N (a)	
Breeding kittiwake		N (b)			N (b)			N (b)			N (b)	
Breeding fulmar		N (c)			N (c)			N (c)			N (c)	
Non-breeding guillemot		Y (d)			Y (d)			Y (d)			Y (d)	

- a) SEP and DEP are beyond the maximum foraging ranges of the breeding seabirds named as qualifying features except fulmar and kittiwake (**Table 7-4** of the **HRA Screening Report**). Other than fulmar and kittiwake, no impact pathway exists for these qualifying features during the breeding season. They are therefore screened out. Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows (see **Table 7-5** of the **HRA Screening Report**):
 - Guillemot: Approximately 6.7% of birds present during non-breeding season.
 - Fulmar: Approximately 4.2% of birds present during autumn and spring migration seasons.
 - Kittiwake: Approximately 2.3% of birds present during autumn migration and 2.8% during spring migration.
 - Razorbill: Approximately 0.9% of birds present during autumn and spring migrations, and 0.6% of birds present during winter.
 - Puffin: Approximately 0.1% of birds present during non-breeding season.

Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out.

- b) Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out.
- c) Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP.
- d) The proportion of guillemot predicted to be present in the SEP and DEP survey area outside the breeding season are sufficiently large for LSE to be considered a possibility; therefore this qualifying feature is screened in.

Site	106
Name of European Site:	North Norfolk Coast SPA and Ramsar
Distance to SEP and DEP (km)	17.7 and 33.3 from the wind farm sites respectively and 1.2km from the onshore cable corridor

Rev. no.1B

	Likely eff	ect(s) of SE	P and DEP	•														
Site Features	C	Collision Ris	k	Displac	cement/Dist	urbance	ŀ	Barrier Effe	ct		effects on w present in habitats	_	birds	effects on voresent with sar Site bou	hin the	ln-	-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Non-breeding migratory waterbird features including pink-footed goose and dark-bellied brent goose		Y (a)								Y (e)	N (h)	N (h)	Y (f)	N (h)	N (h)	Y (g)		
Breeding and on migration Sandwich tern		Y (b)			Y (b)			Y (b)								Y (g)		
Breeding and on migration common tern		Y (c)														Y (g)		
Breeding little tern		N (d)																

- a) Potential collision risk of migrations of waterbirds to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.
- b) SEP and DEP are within the mean maximum foraging range of breeding Sandwich tern. These species are at risk of collision. Sandwich tern may also be at risk of operational displacement. An impact pathway exists and these qualifying features are therefore screened in during the breeding season. During spring and autumn migration periods approximately 31% of Sandwich terns, present within the SEP and DEP survey area may originate from this SPA (Furness, 2015). Sandwich tern are screened in for migration season impacts.
- c) SEP and DEP are within the maximum foraging range of common tern from this SPA and Ramsar site (Table 7-4 of the HRA Screening Report). This species are at risk of collision. An impact pathway exists and this qualifying feature is therefore screened in during the breeding season. Estimates of the proportion of common terns present at SEP and DEP during the autumn and spring migration seasons which originate from the North Norfolk Coast SPA and Ramsar site are based on the SPA population as a proportion of the UK North Sea and Channel BDMPS (Furness 2015). During both autumn and spring migration seasons, breeding adult common terns from the North Norfolk Coast SPA and Ramsar site make up 0.2% of the total BDMPS population. The same percentage of impacts are therefore attributable to birds from this SPA during these times of year (see Section 9.4.3.2 of the RIAA).
- d) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.
- e) There is potential for direct effects on wintering birds present in ex-situ habitats of the SPA and Ramsar during the installation of the cables and/or construction of access tracks.
- f) The qualifying features of the North Norfolk Coast Ramsar are sensitive to noise, visual or air quality disturbance, so indirect effects upon these qualifying features of the SPA and Ramsar might occur and these effects have been screened in for further assessment. In addition, watercourses and arable land which might be supporting wintering birds identified as qualifying features of the SPA and Ramsar could be subject to trenching works during the construction phase, and as such there may be effects upon this ex-situ habitat.
- g) There is potential for in-combination operational displacement and collision risk for Sandwich tern and in-combination operational collision risk for common tern and the non-breeding migratory waterbird feature assemblage (Section 9.4.3 of the RIAA). Additionally, there is potential for in-combination direct effects on the wintering bird features present in ex-situ habitats and for indirect effects on wintering bird features in ex-situ habitats of the SPA and Ramsar (Sections 6.4.2.2 and 6.4.3.2 of the RIAA)
- h) Receptors lie outside the zone of influence of potential effects during operation and decommissioning and are therefore screend out.

Site	107																	
Name of European Site:	North Nor	folk Sandb	anks and Sa	turn Reef S	AC													
Distance to SEP and DEP (km)	47.4																	
	Likely effe	ct(s) of SE	P and DEP															
Site Features	Pe	ermanent l	oss		porary phy disturbance			othering du eased suspe sediment	ended		mobilisation		Unde	rwater nois vibration	e and	lr	n-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B

| Sandbanks which are slightly covered by sea water all the time | N (a) |
|--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Reefs | N (a) |

a) Outside potential ZoI (Table 4-2 of the HRA Screening Report).

Site	108											
Name of European Site:	Northumberla	nd Marine SPA										
Distance to SEP and DEP (km)	266.1 and 260.	.4										
	Likely effect(s) of SEP and DE	₽									
Site Features		Collision Risk		Displa	acement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including												
Arctic tern, common tern, roseate tern,												
Sandwich tern, little tern, puffin,												
guillemot, cormorant, shag, black-		N (a)			N (a)			N (a)			N (a)	
headed gull kittiwake fulmar, great												
black-backed gull, lesser black-backed												
gull, herring gull and razorbill												

- a) Little tern and roseate tern have not been recorded at SEP and DEP. There is consequently no impact pathway for these qualifying features, which are therefore screened out. With the exception of puffin and guillemot, SEP and DEP are beyond the maximum foraging range of the species named as qualifying features at this SPA. No impact pathway therefore exists, and these qualifying features are screened out during the breeding season. Due to the distance between SEP and DEP and this SPA, and parapatric competition between guillemot from the Flamborough and Filey Coast SPA (Wakefield et al., 2017) it is considered unlikely that substantial numbers of breeding guillemots from this SPA would regularly forage at SEP or DEP during the breeding season. On that basis, the impact pathway is not considered to have the potential to represent LSE, and the qualifying feature is screened out. This SPA is not included in Furness (2015). However, the following proportions of birds present at SEP and DEP outside the breeding season are estimated to be from this SPA, and as a result are screened in as an impact pathway is present, and proportions of birds are sufficiently large to potentially represent LSE:
 - Arctic tern: Approximately 6% of birds present during autumn and spring migrations.
 - Common tern: Approximately 2% of birds present during autumn and spring migrations.
 - Guillemot: Approximately 4% of birds present during the non-breeding season.
 - Puffin: Approximately 47% of birds present during the non-breeding season.
 - Sandwich tern: Approximately 11% of birds present during autumn and spring migrations.

Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, this SPA protects the foraging habitat of several breeding seabird SPAs (Farne Islands SPA, Coquet Island SPA, and Northumbria Coast SPA). During the non-breeding season, potential impacts on these birds are considered within their respective breeding colony SPAs. Therefore, this SPA is screened out (Table 7-4 of the HRA Screening Report).

Site		109										
Name of European S	ite:	Northumbr	ia Coast SPA and	d Ramsar								
Distance to SEP and	DEP (km)	268 and 26	0									
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Nonbreeding turnstone, purple sandpiper	N (a)		N (a)		N (a)		N (c)	
Breeding little tern	N (b)		N (b)		N (b)		N (b)	
Arctic tern	N (b)		N (b)		N (b)		N (b)	

- a) Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying bird species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in LSE. These qualifying features are therefore screened out.
- b) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.
- c) As this species was recorded in such small numbers at SEP and DEP outside the breeding season, LSE is not considered possible, and this species can therefore be screened out.

Site	110											
Name of European Site:	Noss SPA											
Distance to SEP and DEP (km)	780 and 765											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding gannet		Y (a)			Y (a)			Y(a)			Y (b)	
Breeding great skua		N (b)			N (b)			N (b)			N (b)	
Breeding guillemot					Y (a)			Y (a)			Y (a)	
Breeding seabird assemblage (fulmar, kittiwake, puffin)		N (c)			N (c)			N (c)			N (c)	

- a) The proportions of gannet and guillemot predicted to be present in the SEP and DEP survey area at particular times of year is sufficiently large for LSE to be considered a possibility; therefore, these qualifying features are screened in.
- b) Great skua was not recorded within the SEP and DEP survey area during the breeding season. Therefore, there is no impact pathway and it is screened out.
- c) Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out.

Site	111														
Name of European Site:	NTP S-H Wa	ttenmeer und	angrenzende	Kustengebiet	e SAC										
Distance to SEP and DEP (km)	469 and 451														
	Likely effect	(s) of SEP an	d DEP												
Site Features	Uı	nderwater no	ise		nteractions (in collision risk)		Change	es to prey ava	ailability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Rev. no.1B

| Grey seal | N(a) |
|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Harbour seal | N(a) |

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haulout, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site	112														
Name of European Site:	Oostersche	Ide SAC													
Distance to SEP and DEP (km)	229 and 224														
	Likely effec	t(s) of SEP an	nd DEP												
Site Features	U	nderwater no	ise		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haulout, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Name of Eu	ropean Site:		Orfor	dness - Shin	gle Street S	AC												
Distance to	SEP and DE	P (km)	108 a	nd 128														
	Likely effe	ct(s) of SEP	and DEP															
Site Features	Pe	ermanent lo	ss		porary phys disturbance			ing due to i cended sedi			- mobilisatio minated sec		Unde	rwater noise vibration	and	Ir	n-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

N (a)

N (a)

N (a)

N (a)

N (a)

a) Outside potential ZoI (Table 4-2 of the HRA Screening Report).

N (a)

Coastal

lagoons

N (a)

113

N (a)

N (a)

N (a)

N (a)

N (a)

Classification: Open Status: Final

N (a)

N (a)

N (a)

N (a)

Rev. no.1B

equinor

SILE			114												
Name of Euro	pean Site:		Östliche Deu	utsche Bucht	SAC										
Distance to S	EP and DEP (k	m)	452.8												
	Likely effect	(s) of SEP and	DEP												
Site Features	ι	Inderwater no	ise	Vesse	Interactions (in collision risk)		Chang	es to prey av	ailability	Chan	iges to water q	luality	1	In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site	115														
Name of European Site:	Ouessant-Mo	olene SAC													
Distance to SEP and DEP (km)	661 and 677														
	Likely effect	(s) of SEP and	DEP												
Site Features	U	nderwater noi	se		nteractions (in collision risk)		Chang	es to prey ava	ilability	Char	iges to water q	uality	ı	n-combination	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	116			
Name of European Site:	Ouse Washes SPA			
Distance to SEP and DEP (km)	112 and 92.2			
Site Features	Likely effect(s) of SEP and DEP			
Site reatures	Collision Risk	Displacement/Disturbance	Barrier Effect	In-combination

Rev. no.1B

	С	0	D	С	0	D	С	0	D	С	0	D
Non-breeding migratory waterbird features including Bewick's swan and Whooper swan		Y (a)									Y (a)	

a) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in (Table 7-4 of the HRA Screening Report).

Site	117											
Name of European Site:	Outer Firth o	of Forth and St A	Andrews Bay c	omplex SPA								
Distance to SEP and DEP (km)	365 and 358											
Site Features	Likely effect	s) of SEP and I) Collision Risk		Displ	acement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding common tern		N (a)			N (a)			N (a)			N (a)	
Breeding Arctic tern		N (a)			N (a)			N (a)			N (a)	
Breeding seabird assemblage (puffin, kittiwake, Manx shearwater, guillemot, herring gull)		N (a)			N (a)			N (a)			N (a)	
Non-breeding red-throated diver		N (a)			N (a)			N (a)			N (a)	
Non-breeding Slavonian grebe		N (a)			N (a)			N (a)			N (a)	
Non-breeding little gull		N (a)			N (a)			N (a)			N (a)	
Non-breeding seabird assemblage (black-headed gull, common gull, herring gull, guillemot, shag, kittiwake and razorbill)		N (a)			N (a)			N (a)			N (a)	
Non-breeding eider and waterfowl assemblage		N (a)			N (a)			N (a)			N (a)	

a) This is a marine SPA designated for offshore aggregations of seabirds during the breeding and non-breeding seasons. The SPA boundary encompasses core areas for the qualifying species and given the extensive distance between the SPA and SEP and DEP, it is considered that there is no connectivity with SEP or DEP. All qualifying features are therefore screened out (Table 7-4 of the HRA Screening Report).

Site	118											
Name of European Site:	Outer Thames	Estuary SPA										
Distance to SEP and DEP (km)	58.3 and 58											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	pance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Non-breeding red- throated divers					Y (a)			Y (a)			Y (a)	
Breeding little tern and common tern		N (b)			N (b)			N (b)				

a) Despite being screened out during the initial HRA screening in April 2021, the red-throated diver qualifying feature of the Outer Thames Estuary SPA has been screened into the RIAA due to the potential risk of disturbance and displacement during the operational phase of SEP and DEP as a result of vessels associated with the OWFs transiting part of the northern section of the SPA from Great Yarmouth, for a distance of around 10km.

b) SEP and DEP are beyond the maximum foraging range of common tern from this SPA and therefore no impact pathway exists for this population. It is therefore screened out during the breeding season. The presence of common tern at SEP and DEP from this SPA during passage periods in large numbers is considered unlikely as the SPA is located south of SEP and DEP (Furness, 2015). Whilst not listed in Furness (2015), the common tern population of this SPA would represent approximately 0.4% of birds recorded at SEP and DEP during migration seasons. This qualifying feature is therefore screened out as potential impacts on such a small number of birds would not be sufficient to represent LSE. Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out. (Table 7-5 of the HRA Screening Report).

119											
Overstrand Clif	ffs SAC										
9.2 from onsho	ore cable corrid	lor area									
Likely effect(s)	of SEP and DE	P									
	-	within the	Direct effect	s within ex-site	u habitats of				l	n-combination	
С	0	D	С	0	D	С	0	D	С	0	D
N (a)			N (a)			N (a)			N (a)		
9	Direct effects C	Direct effects upon habitats SAC boundary C O	Direct effects upon habitats within the SAC boundary C O D	Direct effects upon habitats within the SAC boundary C O D C	Direct effects upon habitats within the SAC boundary C O D C O	Direct effects upon habitats within the SAC boundary C O D C O D Direct effects upon habitats of the SAC	Direct effects upon habitats within the SAC boundary C O D C O D C Diverstrand Cliffs SAC Direct effects within ex-situ habitats of and ground the SAC and ground	Direct effects upon habitats within the SAC boundary C O D C O D C O D C O	Direct effects upon habitats within the SAC boundary C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C D D C O D D C O D C O D D C O D C O D D C O D C O D D C O D C O D D C O D D C D D C O D D C D D C D D C D D C D D C D D D C D D D C D D C D D D D	Direct effects upon habitats within the SAC Direct effects within ex-situ habitats of and groundwater / hydrology effects) C O D C O D C C	Direct effects upon habitats within the SAC boundary C O D

Site	120											
Name of European Site:	Papa Stour SP	Α										
Distance to SEP and DEP (km)	810 and 795											
	Likely effect(s) of SEP and DEF	•									
Site Features		Collision Risk		Displ	lacement/Distur	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding Arctic tern		Y (a)			Y (a)			Y (a)			Y (a)	

a) SEP and DEP are far beyond maximum foraging range of breeding Arctic tern from this SPA (Table 7-4 of the HRA Screening Report), meaning that there is no impact pathway and this qualifying feature can be screened out during the breeding season. However, during the migration season, the proportion of the population migrating through SEP and DEP is estimated to be 2.0% of the total number of birds (Furness, 2015). This qualifying feature is therefore screened in, as there is clearly an impact pathway present and the proportion of birds present at SEP and DEP may be sufficient for LSE to occur.

N (b)

N (b)

b) Migrations of non-breeding ringed plover to and from the site are likely to result in negligible numbers passing through SEP and DEP due to the distance between the SPA and SEP and DEP. Whilst there is a small risk of collision and therefore an impact pathway exists, the number of birds realistically anticipated to be present means that LSE can be ruled out. This qualifying feature is therefore screened out.

Site	121
Name of European Site:	Papa Westray (North Hill and Holm) SPA
Distance to SEP and DEP (km)	720 and 710

Classification: Open Status: Final

N (b)

HRA - Screening Matrices

Breeding ringed plover

N (b)

Rev. no.1B

	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding Arctic tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)
Breeding Arctic skua		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

- a) Papa Westray SPA is beyond the maximum foraging range of Arctic tern or Arctic skua so has no breeding season connectivity. Proportions of these populations migrating through the SEP and DEP sites are likely to be extremely small relative to BDMPS (Table 7-4 of the HRA Screening Report).
- b) The predicted effect attributable to SEP and DEP is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Papa Westray SPA (Table 7-4 of the HRA Screening Report).

Site	122														
Name of European Site:	Pater Noster	-skärgården S	SAC												
Distance to SEP and DEP (km)	832 and 808														
	Likely effect	(s) of SEP and	d DEP												
Site Features	U	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	123											
Name of European Site:	Pentland Firth Is	slands SPA										
Distance to SEP and DEP (km)	630 and 620											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Displ	acement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding Arctic tern		N (a)		N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (b)	N (b)	N (b)

- a) Pentland Firth Islands SPA is beyond maximum foraging range of Arctic tern so has no breeding season connectivity. The proportion of the population migrating through the SEP and DEP sites is likely to be extremely small relative to BDMPS (Table 7-4 of the HRA Screening Report).
- b) The predicted effect attributable to SEP and DEP is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Pentland Firth Islands SPA (Table 7-4 of the HRA Screening Report).

Rev. no.1B

Site	124												
Name of European Site:	Presqu'ile D	e Crozon SAC											
Distance to SEP and DEP (km)	667 and 682												
	Libratu official	(a) of CED on	4 DED										
	Likely effect	t(s) of SEP and	u DEP										
Site Features		nderwater noi		nteractions (in	Change	es to prey ava	ilability	Chan	ges to water o	quality	.	In-combinatio	n
Site Features				-	Change C	es to prey ava	nilability	Chan	ges to water o	quality D	С	In-combinatio	n D

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	125														
Name of European Site:	Récifs et mai	rais arrière-litte	oraux du Cap L	_évi à la Pointe	e de Saire SAC										
Distance to SEP and DEP (km)	409 and 422														
– . ()	1														
	Likely effect((s) of SEP and	DEP												
Site Features		(s) of SEP and			nteractions (in		Chang	es to prey ava	ilability	Chan	ges to water q	uality	l	In-combination	
Site							Chang C	es to prey ava	ilability D	Chan C	ges to water q	uality D	С	In-combination	D
Site	U	nderwater noi	se		collision risk)	ı		1	1		I	- I		1	

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site 126

Name of European Site: Recifs Gris-Nez Blanc-Nez SAC

Distance to SEP and DEP (km) 233 and 240

Marine Mammals

Site Features Likely effect(s) of SEP and DEP

Rev. no.1B

	Ur	nderwater no	oise		nteractions (in collision risk)		Change	es to prey ava	ilability	Chang	ges to water q	luality	I	In-combinatio	n
	C O D			С	О	D	С	О	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Benthic Habitats

Site Features	Pe	ermanent lo	ess		porary phydisturbance			ing due to i ended sedi			mobilisatio		Unde	rwater nois vibration	e and	In	-combinati	on
0.00 / 0.000	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)
Reefs	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.
- b) Outside potential Zol (Section 4.2 of the HRA Screening Report).

Site	127
Name of European Site:	Ridens et dunes hydrauliques du detroit du Pas-de-Calais SAC
Distance to SEP and DEP (km)	237 and 244

Marine Mammals

	Likely effec	t(s) of SEP ar	nd DEP												
Site Features	Ur	iderwater no	ise		nteractions (ir collision risk)		Change	es to prey ava	ilability	Chang	ges to water q	uality		In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

Bent	thic	Ha	bita	ts

Site Features	Pe	ermanent lo	ss		porary phy disturbance			ing due to i ended sedi			mobilisation		Unde	rwater nois vibration		lr	n-combinatio	on
Gito i cuturos	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B

| Sandbanks which are slightly covered by sea water all the time | N (b) | |
|--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Reefs | N (b) | |

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.
- b) Outside potential ZoI (Section 4.2 of the HRA Screening Report).

Site		128	8															
Name of European Site:		Riv	ver Derwent	SAC														
Distance to SEP and DEP (kg	cm)	140	6 and 147															
	Likely effe	ect(s) of SE	P and DEP															
Site Features	Pe	rmanent lo	oss		porary phy disturbance			othering du ased suspe sediment			mobilisation		Unde	rwater nois	e and	In	-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
River lamprey	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Sea lamprey	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)	N (b)		N (b)	N (b)	N (b)	N (b)

- a) The River Derwent SAC has no marine components. The distance between the Projects and the site precludes direct impact upon the site and its supporting habitats. River lamprey are restricted to estuaries of major rivers. Given the distance from the Projects to any such estuaries, e.g. the Humber, there can be no direct or indirect interaction with the Projects.
- b) Sea lamprey could in theory be present in the vicinity of SEP and DEP but given their life history interaction would be limited.

Site	129											
Name of European Site:	River Wensum	SAC										
Distance to SEP and DEP (km)	Located within	n 200m of the on	shore cable cor	ridor area								
Site Features	Direct effects	of SEP and DE upon habitats w boundary	rithin the SAC		s within ex-situ h	1	and groun	cts (geology / co	gy effects)		In-combination	
Watercourses of plain to montane levels with the <i>Ranunculion</i>	С	0	D	С	0	D	С	0	D	C	0	D
fluitantis and Callitricho-Batrachion vegetation	N (a)			Y (b)	N (e)	N (e)	Y (b)	N (e)	N (e)	Y (d)		

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

							1		1	
White clawed crayfish	N (a)				<u>N-Y</u> (c)			N- <u>Y</u> (e <u>d</u>)		
Desmoulin's whorl snail	N (a)	Y (b)	N (e)	N (e)	Y (b)	N (e)	N (e)	Y (d)		
Brook lamprey	N (a)				<u>N-Y</u> (c)			N- <u>Y (ed)</u>		
Bullhead	N (a)				<u>N-Y</u> (c)			N- <u>Y (ed)</u>		

- a) The cable corridor will cross the River Wensum near the village of Attlebridge. SEP and DEP propose to use a trenchless technique (e.g. Horizontal Directional Drilling (HDD)) to cross the river. This technique will ensure that there are no direct effects upon any of the qualifying features of the SAC within the site boundary, and therefore potential direct effects upon the SAC boundary are screened out from any further assessment.
- b) Ranunculion fluitantis and Callitricho-Batrachion vegetation and Desmoulin's whorl snail may be present in habitats functionally connected to the River Wensum, including coastal floodplain and grazing marsh habitat. HDD activities required for the crossing will potentially involve activities located within coastal floodplain grazing marsh adjacent to the River Wensum. Therefore, there is the potential for direct effects upon these qualifying features to occur. These potential effects have been screened in for further assessment.
- c) Potential <u>direct</u> effects upon white-clawed crayfish, brook lamprey and bullhead have been screened out due to the Applicant's commitment to use trenchless crossing techniques at the River Wensum, thereby avoiding direct effects upon the SAC boundary and the qualifying features it supports <u>but an indirect effect, that of a 'bentonite break out' has been identified</u>. <u>Such a breakout would release inert clay material in to the River Wensum with the potential for smothering effects on white-clawed crayfish, brook lamprey and bullhead</u>.
- d) Hornsea Project Three, Norfolk Vanguard, Norfolk Boreas and the Norwich Western Link Road projects also propose to cross the River Wensum and therefore could potentially result in in-combination effects on the Ranunculion fluitantis and Callitricho-Batrachion vegetation and Desmoulin's whorl snail five of the features of the SAC and therefore in-combination effects are screened in for these all features.
- e) Receptors lie outside the zone of influence of potential effects during operation and decommissioning and are therefore screend out.

Site	130														
Name of European Site:	Roches de	Penmarch													
Distance to SEP and DEP (km)	694 and 709)													
	Likely effec	t(s) of SEP an	d DEP												
Site Features	U	nderwater noi	se		teractions (in		Change	es to prey ava	ilability	Chang	ges to water o	uality		In-combinatio	n
One i catales	J				collision risk)		,	. ,	•			•			
one i datales	С	0	D	C	O (Ilision risk)	D	С	0	D	С	0	D	С	0	D

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	131
Name of European Site:	Ronas Hill - North Roe and Tingon SPA

Rev. no.1B

Distance to SEP and DEP (km)	825 and 810											
	Likely effect(s)	of SEP and DEP)									
Site Features		Collision Risk		Disp	lacement/Disturk	oance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding great skua and red-throated diver		N (a)			N (a)			N (a)			N (d)	
Non-breeding great skua and red-throated diver		Y (b)			Y (b)			Y (b)			Y (b)	

- a) SEP and DEP are beyond the maximum foraging range of breeding red-throated diver from this SPA (Table 7-4 of the HRA Screening Report). Great skua was not recorded at SEP and DEP during the breeding season. There is no impact pathway for either qualifying feature during the breeding season and they can therefore be screened out.
- b) Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Red-throated diver: 0.3% of the birds present during the winter, and 15.6% of birds present during spring and autumn migrations.
 - Great skua: 2.0% of birds present during autumn migration, and 0% of birds present during winter.

The proportions of great skua are considered sufficiently large for this species to be screened in during autumn migration. This also applies to red-throated diver in the migration seasons.

Site	132											
Name of European Site:	Rousay SPA											
Distance to SEP and DEP (km)	736.8											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturl	pance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding arctic tern		N (a)			N (a)			N (a)			N (a)	
Breeding seabird assemblage including as named features guillemot, Arctic skua, kittiwake, fulmar		N (a)			N (a)			N (a)			N (a)	

a) SEP and DEP are beyond the maximum foraging range of all breeding seabirds included as qualifying features of this SPA except fulmar and kittiwake. For Arctic tern, Arctic skua and guillemot, no impact pathway exists during the breeding season; these qualifying features are therefore screened out.

Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP.

Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding gannet and kittiwake from this SPA would regularly forage at DEP or SEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, these qualifying features are screened out.

Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:

Arctic tern: Approximately 0.1% of birds present during autumn and spring migrations.

Arctic skua: Approximately 0.3% of birds present during autumn migration and 0% during spring migration.

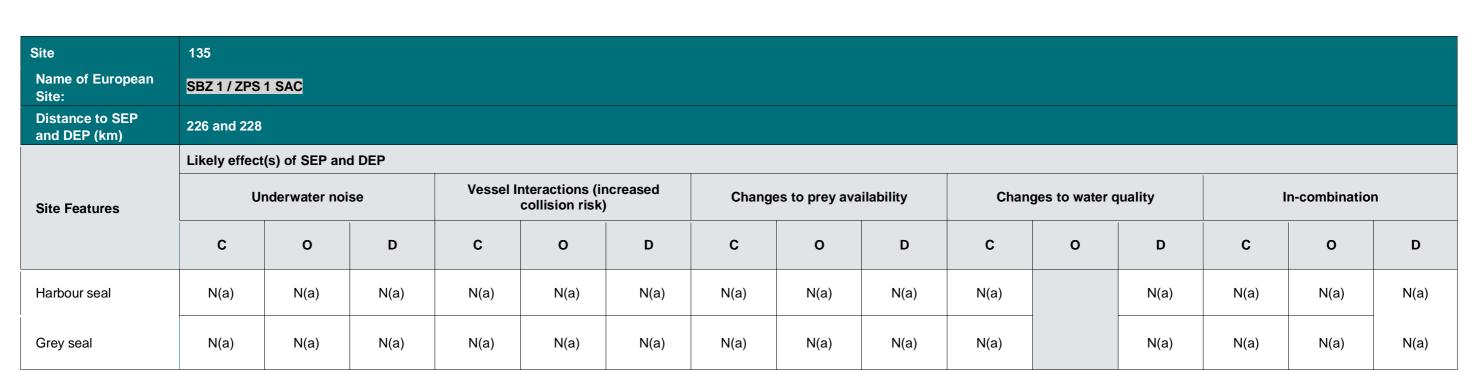
Kittiwake: Approximately 0.4% of birds present during autumn migration and 0.5% during spring migration.

Rev. no.1B

Guillemot: Approximately 0.9% of birds present during non-breeding season.

Fulmar): Approximately 0.3% of birds present during autumn and spring migration seasons.

These proportions are considered sufficiently small for all qualifying features to be screened out at these times of year. Whilst an impact pathway has been identified, predicted proportions of birds present at SEP and DEP originating from this SPA are very low, so LSE can be ruled out and these qualifying features are screened out.


Site	133														
Name of European Site:	Sälöfjorden	SAC													
Distance to SEP and DEP (km)	831 and 808														
	Likely effect	(s) of SEP and	I DEP												
Site Features	U	nderwater noi	se		nteractions (ir collision risk)		Chang	es to prey ava	ilability	Chan	ges to water o	quality	ı	In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	134														
Name of European Site:	Sanday SAC	;													
Distance to SEP and DEP (km)	700 and 690														
	Likely effect	(s) of SEP an	d DEP												
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Chang	es to prey ava	ilability	Chan	ges to water	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Rev. no.1B

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	136														
Name of European Site:	Scapa Flow ps	SPA													
Distance to SEP and DEP (km)	660 and 650														
	Likely effect(s	t(s) of SEP and DEP													
Site Features		Collision Risk		Displ	acement/Disturl	bance		Barrier Effect			In-combination				
	С	0	D	С	0	D	С	0	D	С	0	D			
Breeding red-throated diver		N (a)			N (a)			N (a)			N (a)				
				I							1				

- a) SEP and DEP are beyond the maximum foraging range of breeding red-throated diver (Table 7-4 of the HRA Screening Report), meaning that no impact pathway exists during the breeding season.
- b) Great northern diver, black-throated diver and Slavonian grebe were not recorded within the SEP and DEP survey area. There is therefore no impact pathway and these qualifying features can be screened out. It is not considered likely that the non-breeding shag of this SPA will occur at SEP and DEP. Therefore, there is no impact pathway and this qualifying feature is screened out. Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying waterfowl species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in LSE. These qualifying features are therefore screened out (Table 7-4 of the HRA Screening Report).

Site	137											
Name of European Site:	Seas off Fou	la SPA										
Distance to SEP and DEP (km)	760 and 750											
	Likely effect	(s) of SEP and	DEP									
Site Features		Collision Risk		Diami-		_						
One i catales		Collision Risk		Dispia	cement/Distur	bance		Barrier Effect			In-combination	
One i catalos	С	O O	D	C	cement/Distur O	bance D	C	O Barrier Effect	D	С	In-combination O	D
Breeding seabird assemblage including great skua, fulmar, Arctic skua, guillemot, puffin	С			-				I				

- This is a marine SPA designated for offshore aggregations of seabirds during the breeding and non-breeding season. Great skua and Arctic skua were not recorded within the SEP and DEP survey area during the breeding season. Therefore, there is no impact pathway and both qualifying features are screened out. SEP and DEP are beyond the maximum foraging range of all other breeding seabirds included as qualifying features of this SPA except fulmar (Table 7-4 of the HRA Screening Report). Therefore, no impact pathway exists for guillemot and puffin and they are screened out. Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP.
- b) Features of the non-breeding seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out. It is considered unlikely that birds associated with the non-breeding seabird assemblage would be present at SEP and DEP outside the non-breeding season, based on the fact that birds present at SEP and DEP during the breeding season are likely to originate from colonies closer to the Projects. The qualifying features of this assemblage are therefore screened out (Table 7-4 of the HRA Screening Report).

Site	138											
Name of European Site:	Seevogelso	hutzgebiet He	lgoland SPA									
Distance to SEP and DEP (km)	450 and 432 Likely effect(s) of SEP and DEP											
Site Features		ct(s) of SEP an Collision Risl		Displa	cement/Distu	rbance D	 c	Barrier Effec	t D	C	n-combinatio	n D
Breeding seabird assemblage including as named features razorbill, fulmar, herring gull, lesser black-backed gull, kittiwake, gannet, guillemot		N (a)			N (a)			N (a)			N (c)	
Non-breeding seabird assemblage including razorbill, black- throated diver, red-throated diver, common gull, lesser black- backed gull, little gull, kittiwake, common scoter, red-necked grebe, eider, common tern, Arctic tern, Sandwich tern, gannet, guillemot		N (b)			N (b)			N (b)			N (c)	

a) Tracking data from gannets breeding on Helgoland show these birds do not travel in the direction of or as far as the SEP and DEP sites despite this site being within theoretical maximum foraging range of gannet. SEP and DEP is beyond the maximum foraging range of other seabird species at Seevogelschutzgebeit Helgoland SPA. Proportions of these populations migrating through SEP and DEP are likely to be very small relative to BDMPS regional populations (Table 7-4 of the HRA Screening Report).

Rev. no.1B

b) Migrations of birds from this SPA are likely to result in negligible numbers passing through the SEP and DEP sites during migration relative to the size of BDMPS regional populations, not only because the sites are 461km apart, but also because nonbreeding seabirds from this SPA are likely to migrate predominantly along the continental coast of the North Sea towards northern breeding grounds rather than across the southern North Sea.

c) The predicted effect attributable to SEP and DEP is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Seevogelschutzgebeit Helgoland SPA (Table 7-4 of the HRA Screening Report).

Site	139														
Name of European Site:	Skagens Gre	en og Skagerra	ak SAC												
Distance to SEP and DEP (km)	741 and 718														
	Likely effect	(s) of SEP and	DEP												
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water q	uality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report).

Site	140														
Name of European Site:	Soteskär S	AC													
Distance to SEP and DEP (km)	853 and 830	0													
	Likely effect	ct(s) of SEP a	nd DEP												
Site Features	Ur	nderwater no	ise		teractions (in		Change	es to prey av	ailability	Chanç	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017) (Table 6-4 of the HRA Screening Report).

Site	141
Name of European Site:	Southern North Sea SAC
Distance to SEP and DEP (km)	25.6 and 14.1
Site Features	Likely effect(s) of SEP and DEP

Rev. no.1B

		erwater nois barrier effec			sel Interact sed collision			anges to p	_	Ch	anges to p availability		Change	es to water	quality	In	-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	Y(a)	N(b)	N(b)

- a) SEP and DEP are located outside of the Southern North Sea SAC however it is assumed that all harbour porpoise in the SEP and DEP offshore sites are associated with the SNS SAC. Potential effects from underwater noise and barrier effects; vessel interactions; changes to water quality; changes to prey availability are scoped in. The in-combination effects assessment assesses underwater noise impacts only (Section 8.4.1.6 of the RIAA).
- b) Any in-combination effects for offshore wind farms during operation and maintenance or decommissioning have been screened out of further assessment. See Sections 10.3.4.1.3, 10.3.4.1.4 and 10.3.4.1.5 of Appendix 10.3 Marine Mammals CIA Screening (document reference 6.3.10.3)[APP-193] for further information.

Site	142											
Name of European Site:	St Abb's Head t	to Fast Castle SP	'A									
Distance to SEP and DEP (km)	360											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Displ	acement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features herring gull, razorbill, guillemot, shag		N (a)			N (a)			N (a)			N (b)	
Breeding kittiwake		N (b)			N (b)			N (b)			N (b)	
Non-Breeding seabird assemblage including as named features herring gull, razorbill, kittiwake, shag		N (c)			N (c)			N (c)			N (c)	
Non-breeding guillemot		Y (d)			Y (d)			Y (d)			Y (d)	

- a) SEP and DEP are beyond the maximum foraging range of razorbill, guillemot, herring gull and shag from this SPA (Table 7-4 of the HRA Screening Report). There is consequently no impact pathway for these qualifying features during the breeding season and they are screened out.
- b) SEP and DEP are also beyond the mean maximum but within the maximum foraging range of kittiwake from this SPA (**Table 7-4** of the **HRA Screening Report**). Due to the distance between SEP and DEP and this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA and Farne Islands SPA (Wakefield et al., 2017), it is considered highly unlikely that breeding birds from this SPA would regularly forage at SEP or DEP during the breeding season in sufficient numbers to result in LSE. Therefore, this qualifying feature is also screened out during the breeding season despite an impact pathway being identified.
- c) Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Razorbill: Approximately 0.7% of birds present during the migration seasons, and 0.4% during the winter.
 - Guillemot: Approximately 4.1% of birds present during the non-breeding season.
 - Kittiwake: Approximately 0.8% of birds present during the autumn migration season and 0.9% of birds present during the spring migration.
 - Herring gull: Approximately 0.2% of birds present during the non-breeding season.
 - Shag: Not present during the non-breeding season.

Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, except for guillemot, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore they are screened out,

d) Except for guillemot, which is screened in.

Classification: Open

Rev. no.1B

Site	143														
Name of European Site:	Steingrund	SAC													
Distance to SEP and DEP (km)	458 and 440														
	Likely effect	t(s) of SEP an	d DEP												
Site Features	U	nderwater no	ise		nteractions (ir collision risk)		Chang	es to prey ava	ailability	Chan	ges to water o	quality	-	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site	144														
Name of European Site:	Store Rev S	CI													
Distance to SEP and DEP (km)	708 and 685	5													
	Likely effec	t(s) of SEP a	nd DEP							1					
Site Features	Ur	nderwater no	ise		nteractions (in collision risk)		Change	es to prey ava	ailability	Chan	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report).

Site	145		
Name of European Site:	Stour & Orwell Estuaries SPA and Ramsar		
Distance to SEP and DEP (km)	125 and 115		
Site Features	Likely effect(s) of SEP and DEP Collision Risk Displacement/Disturbance	Barrier Effect	In-combination

pen Status: Final

equinor •

Rev. no.1B

	С	0	D	С	0	D	С	0	D	С	0	D
Non-breeding migratory water bird asemblage		N (a)										
Breeding avocet		N (a)										

a) Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying bird species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in impacts substantial enough to result in LSE. These qualifying features are therefore screened out.

Site	146														
Name of European Site:	Strandenge	på Læsø og h	avet syd herfo	or SAC											
Distance to SEP and DEP (km)	750 and 728														
	Likely effect	(s) of SEP and	d DEP												
Site Features	U	nderwater noi	se		nteractions (ir collision risk)		Chang	es to prey ava	ilability	Chan	ges to water o	_l uality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017).

Site	147											
Name of European Site:	Sumburgh Hea	d SPA										
Distance to SEP and DEP (km)	750 and 740											
	Likely effect(s)	of SEP and DEF	•									
Site Features		Collision Risk		Disp	lacement/Disturl	bance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features kittiwake,		N (a)			N (a)			N (a)			N (b)	

- a) Sumburgh Head SPA is beyond maximum foraging range of designated seabird species so has no breeding season connectivity (Table 7-4 of the HRA Screening Report). Proportions of these populations migrating through the SEP and DEP sites are likely to be very small relative to BDMPS.
- b) The predicted effect attributable to SEP and DEP is so small that it would not significantly contribute to or alter the overall in-combination assessment for these features at Sumburgh Head SPA.

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Site	148														
Name of European Site:	Sydlige Nord	lsø SAC													
Distance to SEP and DEP (km)	443 and 422														
	Likely effect	(s) of SEP and	d DEP												
Site Features	Uı	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water q	uality	ı	n-combination	ı
		_	1 _	_	_ 1	_	_	1			1			1	
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	D N(a)	C N(a)	0	N(a)	C N(a)	O N(a)	N(a)
Harbour porpoise Grey seal								_			0				

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site				149																	
Name of Europea	ın Site:			Sylte	r Außenrif	f SCI															
Distance to SEP	and DEP (k	m)		388 a	nd 367																
Marine mammals																					
				Likely	effect(s)	of SEP a	nd DEP														
Site Features					Underw	ater nois	e		nteractions collision ri		ed c	hanges to	prey ava	ilability	Chan	ges to wa	ter quality	,	In-c	ombinatio	n
				С	;	0	D	С	0	D		С	0	D	С	0	D)	С	0	D
Harbour porpoise	•			N (a) N	l (a)	N (a)	N (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N (a)		N (a) 1	N (a)	N (a)	N (a)
Grey seal				N (a) N	l (a)	N (a)	N (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N (a)		N (a) 1	N (a)	N (a)	N (a)
Harbour seal				N (a) N	l (a)	N (a)	N (a)	N (a)	N (a) N	(a)	N (a)	N (a)	N (a)		N (a) 1	N (a)	N (a)	N (a)
Fish						I				<u> </u>			I					I			
	Likely ef	fect(s) of	SEP and D	EP																	
Site Features		anent / Ion nabitat Ios	_		Temporary physical Increased suspended						mobilisati inated se	ion of ediments	Unde	erwater noi vibration		comm specie their d	Impacts o ercially ex es associa lisplaceme area of act works	ploited ted with ent from	I	n-combina	tion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
River lamprey	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)

HRA – Screening Matrices

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

equinor **

Twaite shad N(b) N(b)

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haulout, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.
- b) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE.

Site	150											
Name of European Site:	Teesmouth and	Cleveland Coas	t SPA and Rams	ar								
Distance to SEP and DEP (km)	204 and 202											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	oance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Non-breeding knot, redshank, ruff and waterfowl		N (a)			N (a)			N (a)			N (a)	
Non-breeding Sandwich tern		N (b)			N (b)			N (b)			N (b)	
Breeding little tern		N (c)			N (c)			N (c)			N (c)	

- a) Due to the distance at which this SPA is situated from SEP and DEP, migrations of qualifying bird species to and from the SPA are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in LSE. These qualifying features are therefore screened out.
- b) Sandwich terns from the SPA will be present at SEP and DEP on migration, meaning an impact pathway does exist due to collision risk, and possibly displacement. The proportion of the population present is predicted to be sufficiently large (5.0%) compared with the wider BDMPS (Furness, 2015) to screen this qualifying feature in. However, as this species was recorded in such small numbers at SEP and DEP outside the breeding season, LSE is not considered possible, and this species can therefore be screened out.
- c) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.

Site	151																	
Name of European Site:	The Broad	ds SAC																
Distance to SEP and DEP (km)	9.5km aw	ay from the	onshore c	able corrid	or area													
	Likely effe	ect(s) of SE	P and DEP															
Site Features	Pe	Likely effect(s) of SEP and DEP Permanent loss Temporary physic disturbance						othering du ased suspe sediment			mobilisation		Unde	water nois vibration	e and	In	-combinatio	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Hard oligo-mesotrophic waters with benthic vegetation of <i>Chara spp</i> .	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

Natural eutrophic lakes with *Magnopotamion* or

Hydrocharition - type

Transition mires and

Calcareous fens with Cladium mariscus and

species of the Caricion

Alluvial forests with *Alnus* glutinosa and *Fraxinus*

vegetation

quaking bogs

davallianae

Alkaline fens

excelsior

N (a)

Doc. No. C282-RH-Z-GA-00158

N (a)

Rev. no.1B

N (a)

N (a)

Page 98 of 108

N (a)

N (a)

N (a)

N (a)

a) No overlap therefore no direct effect, and beyond the range of potential significant indirect effect (Table 3-2 of the HRA Screening Report).

Site		152																
Name of European Si	te:	The	Wash and N	orth Norfo	lk Coast SA	С												
Distance to SEP and	DEP (km)	8.4 a	nd 24.3															
Marine Mammals																		
	Likely effe	ct(s) of SE	P and DEP															
Site Features		Underwate	r noise		(increa disturbance disturbance	cts, vessel li sed collision e at seal hau ce to foragin seals at sea	n risk), I out sites, g harbour	С	hanges to	water qua	lity	Change	es to prey av	ailability		In	-combination	
	С	0		D	С	0	D	С		0	D	С	0	D		С	0	D
Harbour seal	Y (a)	Y (a) Y	(a)	Y (a)	Y (a)	Y (a)	Y (a) Y	(a)	Y (a)	Y (a)		Y (a) Y	′ (a)	N (d)	N (d)
Benthic Habitats		·	·					·	·	·	·			·	·	·		
Site Features	Permane	nt / long ter loss	m habitat		mporary phyrbance / hab		Incre	eased suspe sediment	ended	Effects	on bedload transport		Under	rwater nois vibration	e and		In-combinat	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time (subtidal snadbanks)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (c)	N (c)	N (c)		Y (c)		N (b)		N (b)	N (b)	N (b)	N (b)
Mudflats and sandflats not covered by seawater at low tide	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)	N (b)		N (b)		N (b)		N (b)	N (b)	N (b)	N (b)

Rev. no.1B

Large shallow inlets and bays N ((b)	N (b)		N (b)		N (b)		N (b)	N (b)	N (b)	N (b)							
-----------------------------------	-----	-------	-------	-------	-------	-------	-------	-------	-------	--	-------	--	-------	--	-------	-------	-------	-------

- a) Potential effects from underwater noise; vessel interactions; changes to water quality; changes to prey availability; and disturbance at seal haul-out sites for foraging harbour seal cannot be ruled out (**Table 6-4** of the **HRA Screening Report**). Nearest SAC for harbour seal to SEP and DEP. Assumed that all harbour seal in the SEP and DEP area are associated with this SAC. The in-combination effects assessment assesses underwater noise impacts only (see **Section 8.4.4.4** of the **RIAA**)
- b) SEP and DEP are outside the ZoI and are therefore screened out. Indirect far-field effects are limited to 1km of the works and for the duration of 1 tidal cycle
- c) Natural England's AoO states that water flow (tidal current) changes including sediment transport is a low-risk pressure from cable laying, burial and protection activities. 'Sandbanks which are slightly covered by sea water all the time' are potentially sensitive to this pressure because one of its component habitats, subtidal mud, is sensitive to the pressure. However, subtidal sand is assessed as not sensitive (Natural England, 2017b). Evidence suggests that a LSE on the SAC is unlikely, but it cannot be entirely ruled out at this stage.
- d) Any in-combination effects for offshore wind farms during operation and maintenance or decommissioning have been screened out of further assessment. See Sections 10.3.4.1.3, 10.3.4.1.4 and 10.3.4.1.5 of Appendix 10.3 Marine Mammals CIA Screening (document reference 6.3.10.3)[APP-193] for further information.

Site	153											
Name of European Site:	The Wash SP	A and Ramsar										
Distance to SEP and DEP (km)	43.3 and 61.6											
	Likely effect(s	s) of SEP and DEF	•									
Site Features		Collision Risk		Di	splacement/Disturbar	nce		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Non-breeding migratory waterbird assemblage including Bewick's swan, pink- footed goose and dark-bellied brent goose		Y (a)									Y (a)	
Breeding common tern		N (b)			N (b)			N (b)			N (b)	
Breeding little tern		N (c)			N (c)			N (c)			N (c)	

- a) Potential collision risk of migrations of waterfowl to and from the SPA represents an impact pathway which could result in LSE, due to the relatively close proximity of the SPA to SEP and DEP. These qualifying features are therefore screened in.
- b) SEP and DEP are beyond the maximum foraging range of common tern breeding at this SPA (Table 7-4 of the HRA Screening Report), and therefore no impact pathway exists for this population. The population is therefore screened out. The common tern population of this SPA would represent approximately 0.3% of birds recorded at SEP and DEP during migration seasons. This qualifying feature is therefore screened out as despite an impact pathway being identified, potential impacts on such a small number of birds would not be sufficiently large to represent LSE.
- c) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.

Site	154
Name of European Site:	Tregor Goëlo SAC
Distance to SEP and DEP (km)	546 and 560

Rev. no.1B

	Likely effect	t(s) of SEP and	d DEP												
Site Features	U	nderwater noi	se		nteractions (in collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	quality	I	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of the SEP and DEP sites and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage (SCOS, 2017).

Site	155											
Name of European Site:	Troup, Pennan	and Lion`s Heads	SPA									
Distance to SEP and DEP (km)	540 and 530											
	Likely effect(s)	of SEP and DEP										
Site Features		Collision Risk		Disp	lacement/Disturb	ance		Barrier Effect			In-combination	
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding seabird assemblage including as named features razorbill, guillemot, herring gull		N (a)			N (a)			N (a)			N (a)	
Breeding kittiwake		N (b)			N (b)			N (b)			N (b)	
Breeding fulmar		N (c)			N (c)			N (c)			N (c)	
Non-breeding kittiwake and guillemot		Y (d)			Y (d)			Y (d)			Y (d)	
Non-breading seabird assemblage including razorbill, herring gull and fulmar		N (e)			N (e)			N (e)			N (e)	

- a) SEP and DEP are beyond the maximum foraging range of breeding guillemot, herring gull and razorbill. There is therefore no impact pathway for these qualifying features during this season and they are screened out. SEP and DEP are within the mean maximum foraging range of fulmar, and the maximum foraging range of kittiwake (Table 7-4 of the HRA Screening Report).
- b) Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out.
- c) Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP.
- d) Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Kittiwake: Approximately 3.4% of birds present during autumn migration and 4.1% during spring migration.
 - Guillemot: Approximately 1.6% of birds present during non-breeding season.
 - Fulmar: Approximately 0.6% of birds present during autumn and spring migration seasons.
 - Herring gull: Approximately 1.2% of birds present during non-breeding season.
 - Razorbill: Approximately 1.0% of birds present during autumn and spring migration seasons and 0.6% of birds present during the winter season.

Rev. no.1B

The proportions of kittiwake and guillemot predicted to be present in the SEP and DEP survey area outside the breeding season that are from this SPA are sufficiently large for LSE to be considered a possibility; therefore these qualifying features are screened in.

e) Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore they are screened out.

Site	156													
Name of European Site:	Unterems u	nd Außenem	s SCI											
Distance to SEP and DEP (km)	377 and 360													
	Likely effect	t(s) of SEP a	nd DEP											
				.,					I					
Site Features	Ur	nderwater no	ise		iteractions (i collision risk	Change	es to prey ava	ailability	Chan	ges to water o	quality	ı	n-combinatio	n
Site Features	Ur C	nderwater no O	pise D		_	Change C	es to prey ava	ailability D	Chan C	ges to water o	quality D	C	n-combinatio O	on D

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site	157														
Name of European Site:	Vadehavet n	ned Ribe Å, Tv	ved Å og Varde	e Å vest for Va	arde SAC										
Distance to SEP and DEP (km)	508 and 489														
	Likely effect	(s) of SEP and	d DEP	ı						ı			ı		
Site Features	U	nderwater noi	ise		nteractions (ir collision risk)		Change	es to prey ava	ilability	Chan	ges to water o	_l uality	I	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out (Table 6-4 of the HRA Screening Report). The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Rev. no.1B

Site	158														
Name of European Site:	Venø, Venø	Sund SAC													
Distance to SEP and DEP (km)	602 and 579	1													
	Likely effect	t(s) of SEP ar	nd DEP												
				Vessel Ir	nteractions (in	creased									
Site Features	Ur	nderwater noi	se		collision risk)		Change	es to prey ava	ilability	Chang	ges to water q	uality	lı	n-combination	1
Site Features	Ur C	nderwater noi O	se D		-		Change C	es to prey ava	ilability D	Chang C	ges to water o	uality D	C	n-combination O	n D

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site		159													
Name of Europear	Site:	Vlaamse B	anken SAC												
Distance to SEP a	nd DEP (km)	192													
	Likely effect(s	s) of SEP and	I DEP												
Site Features	Un	derwater nois	se	collision	nteractions (in risk) and distu seal haul outs	urbance at	Change	es to prey ava	ilability	Chang	ges to water	quality		In-combination	on
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Grey seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)
Harbour seal	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)	N (a)		N (a)	N (a)	N (a)	N (a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haulout, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site			60													
Name of Europ	pean Site:	N	lakte v	an de Raa	n SCI/SAC											
Distance to SE	EP and DEP (k	m) 1	73.9													
	Likely effect	(s) of SEP a	nd DEF	•												
Site Features	U	nderwater ı	oise		Vessel	Interactions (i collision risk		Change	es to prey ava	ilability	Chan	ges to water o	quality		In-combination	n
	С	0		D	С	0	D	С	0	D	С	0	D	С	0	D

Rev. no.1B

| Harbour porpoise | N (a) |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Grey seal | N (a) |
| Harbour
seal | N (a) |

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (Table 6-4 of the HRA Screening Report). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haulout, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site	161																				
Name of European Site	Voordelt	ta SAC																			
Distance to SEP and DEP (km)	214 and	209																			
Marine Mammals																					
	Likely ef	fect(s) of	SEP and	d DEP																	
Site Features		Underwa	ater noise	е	Ves	sel Intera collis	ctions (ir sion risk)		(Changes	to prey av	ailability		Chang	es to wate	er quality			In-combi	nation	
	С		0	D	С		0	D			0	D		С	0		D	С	0		D
Harbour porpoise	N (a)	N	l (a)	N (a)	N (a)	1	۷ (a)	N (a)	N	(a)	N (a)	N (a)	N (a)		N	(a)	N (a)	N (a)	N (a)
Grey seal	N (a)	N	l (a)	N (a)	N (a)	ı	N (a)	N (a)	N	(a)	N (a)	N (a)	N (a)		N	(a)	N (a)	N (a)	N (a)
Harbour seal	N (a)	N	l (a)	N (a)	N (a)	ı	V (a)	N (a)	N	(a)	N (a)	N (a)	N (a)		N	(a)	N (a)	N (a)	N (a)
Fish																					
	Likely 6	effect(s) o	of SEP an	nd DEP																	
Site Features		nent / lor abitat los		_	oorary phy rbance / h loss		se	ased suspe diment and deposition	re-	C	mobilisatio ontaminat sediments	ed	Under	water noi vibration		comme spec with th	mpacts of ercially existed as associated as associated as	xploited ciated acement ea of	In-c	combinat	ion
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea lamprey	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
River lamprey	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
Allis shad	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)
Twaite shad	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)	N(b)

- a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). For harbour porpoise, the site is outside of the North Sea MU and is therefore screened out. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haulout, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.
- b) The distance between the Projects and the site precludes direct impact upon the site and its supporting habitats. Fish associated with the SAC could in theory be present in the vicinity of SEP and DEP but given the distance of the Projects they would be present in low numbers. The absence of designated sites for these species on the UK Southern North Sea coast reflects the lower importance of the area to this species and this site is therefore screened out (Table 5-2 of the HRA Screening Report).

Rev. no.1B

Site	162														
Name of European Site:	Vrångöskär	gården SAC													
Distance to SEP and DEP (km)	821 and 798	3													
	Likely effec	t(s) of SEP ar	nd DEP												
Site Features	U	nderwater no	ise		nteractions (ir collision risk)		Chang	es to prey ava	ailability	Chang	ges to water o	quality	ı	n-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Site		163													
Name of European S	ite:	Wadde	nzee SAC												
Distance to SEP and	DEP (km)	230 an	d 214												
	Likely effect	t(s) of SEP an	d DEP												
Site Features	Ur	nderwater noi	se		nteractions (i collision risk		Change	es to prey ava	ilability	Chang	ges to water q	uality	I	In-combinatio	n
	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Grey seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)
Harbour seal	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)	N(a)		N(a)	N(a)	N(a)	N(a)

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE (**Table 6-4** of the **HRA Screening Report**). For harbour porpoise the site is outside of the North Sea MU and is therefore screened out. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). Grey seals will typically forage in the open sea and return regularly to land to haul-out, although they may frequently travel up to 100km between haul-out sites. Foraging trips generally occur within 100km of their haul-out sites, although grey seal can travel up to several hundred kilometres offshore to forage.

Site	164													
Name of European Site:	West Westray	SPA												
Distance to SEP and DEP (km)	720 and 710													
		ely effect(s) of SEP and DEP Collision Risk Displacement/Disturbance Barrier Effect In-combination												
Site Features		Collision Risk		Displa	acement/Distur	bance		Barrier Effect			In-combination			
	С	0	D	С	0	D	С	0	D	С	0	D		
Breeding seabird assemblage including as named features, Arctic tern, razorbill, Arctic skua, guillemot		N (a)			N (a)			N (a)			N (a)			
Breeding fulmar		N (b)			N (b)			N (b)			N (b)			
Breeding kittiwake		N (c)			N (c)			N (c)			N (c)			
Non-breeding Arctic tern		N (d)			N (d)			N (d)			N (d)			

Rev. no.1B

Non-breeding guillemot	Y (e)	Y (e)	Y (e)	Y (e)
Non-breeding seabird assemblage including razorbill, Arctic skua, fulmar, kittiwake	N (f)	N (f)	N (f)	N (f)

- a) SEP and DEP are beyond the maximum foraging range of all breeding seabirds included as qualifying features of this SPA except fulmar and kittiwake (Table 7-4 of the HRA Screening Report). For all other qualifying features, no impact pathway exists during the breeding season; therefore they are screened out.
- b) Breeding fulmars from this SPA are highly unlikely to regularly occur at SEP and DEP due to the distance between the SPA and SEP and DEP, and the habitat preferences of this species (Edwards, 2015). Therefore, whilst an impact pathway exists, these qualifying features are screened out on the basis that sufficient numbers to result in LSE are considered unlikely to be present at SEP and DEP.
- c) Due to utilisation distribution data indicating that the Project sites will not be used by birds from this SPA, and parapatric competition with birds from (amongst others) the Flamborough and Filey Coast SPA, Forth Islands SPA and Farne Islands SPA (Wakefield et al., 2017), and the distance between the SPA and SEP and DEP, it is considered highly unlikely that breeding kittiwake from this SPA would regularly forage at SEP or DEP during the breeding season in numbers sufficient for LSE to be a possibility. Therefore, whilst an impact pathway exists, this qualifying feature is screened out.
- d) Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Arctic tern: Approximately 0.8% of birds present during autumn and spring migration seasons.
 - Guillemot: Approximately 4.8% of birds present during non-breeding season.
 - Razorbill: Approximately 0.3% of birds present during autumn and spring migration seasons, and 0.2% of birds present during winter season.
 - Kittiwake: Approximately 2.8% of birds present during autumn migration and 3.3% during spring migration.
 - Arctic skua: Approximately 0.2% of birds present during autumn migration season and 0% of birds present during spring migration season.
 - Fulmar: Approximately 0.2% of birds present during autumn and spring migration seasons.

These proportions are considered sufficiently small for Arctic tern to be screened out at these times of year. Whilst an impact pathway has been identified, predicted proportions of birds present at SEP and DEP originating from this SPA are very low, so LSE can be ruled out and these qualifying features are screened out.

- e) The proportion of guillemot predicted to be present in the SEP and DEP survey area that are from this SPA outside the breeding season is sufficiently large for LSE to be considered a possibility; therefore this qualifying feature is screened in.
- f) Features of the seabird assemblage of this SPA could be present at SEP and DEP during the non-breeding season. They could therefore be susceptible to a range of impact pathways. However, it is not considered likely that sufficient numbers of the seabird assemblage would be present at SEP and DEP for LSE to occur. Therefore, they are screened out.

Site	165												
Name of European Site:	Yell Sound	Coast SAC											
Distance to SEP and DEP (km)	807 and 796	;											
	Likely effec	t(s) of SEP and	I DEP										
Site Features		t(s) of SEP and Inderwater noi		nteractions (ir collision risk)	Change	es to prey ava	ilability	Chan	ges to water q	uality		In-combinatio	n
Site Features					Change	es to prey ava	nilability	Chan	ges to water o	uality D	С	In-combinatio	n D

a) The distance between the potential impact range of SEP and DEP and the extent of any effect on individuals from this site would result in no potential for LSE. The typical and average foraging range for harbour seal is 50-80km (SCOS, 2017). (Table 6-4 of the HRA Screening Report).

Rev. no.1B

Site	166											
Name of European Site:	Ythan Estuar	Ythan Estuary, Sands of Forvie and Meikle Loch SPA										
Distance to SEP and DEP (km)	480	480										
	Likely effect(s) of SEP and Di	ΕP									
Site Features	Collision Risk		Displa	acement/Distur	bance	Barrier Effect			In-combination			
	С	0	D	С	0	D	С	0	D	С	0	D
Breeding Sandwich tern and common tern		N (a)			N (a)			N (a)			N (a)	
Breeding little tern		N (b)			N (b)			N (b)			N (b)	
Non-breeding common tern		N (c)			N (c)			N (c)			N (c)	
Non-breeding Sandwich tern		Y (d)									Y (d)	
Non-breeding migratory waterbird assemblage		N (e)			N (e)			N (e)			N (e)	

- a) SEP and DEP are beyond the maximum foraging range of Sandwich tern and common tern breeding at this SPA and Ramsar site (Table 7-4 of the HRA Screening Report). There is no impact pathway for these qualifying features during the breeding season, and they are therefore screened out.
- b) Little tern has not been recorded at SEP and DEP and has a very coastal distribution. There is consequently no impact pathway for this population, and this qualifying feature is screened out.
- c) Outside the breeding season, the proportions of birds estimated to be present at SEP and DEP that are from this SPA and Ramsar site (according to the composition of the wider relevant BDMPS of Furness (2015)) are as follows:
 - Common tern: Approximately <0.1% of birds present during autumn and spring migration seasons.
 - Sandwich tern: Approximately 4.3% of birds present during autumn and spring migration seasons.

These proportions are considered sufficiently small for common tern to be screened out at these times of year. Whilst an impact pathway has been identified, predicted proportions of birds present at SEP and DEP originating from this SPA and Ramsar site are very low, so LSE can be ruled out and this qualifying feature screened out.

- d) Sandwich tern from this SPA and Ramsar site are screened in outside the breeding season as proportions predicted to be present at SEP and DEP are considered sufficiently large for LSE to be possible due to collision risk, and potentially displacement.
- e) Due to the distance at which this SPA and Ramsar site is situated from SEP and DEP, migrations of qualifying waterfowl species to and from the SPA and Ramsar site are likely to result in negligible numbers passing through SEP and DEP. This means that whilst a collision impact pathway exists, it is anticipated that numbers present would not be sufficient to result in LSE. These qualifying features are therefore screened out.

Page 107 of 108

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

REFERENCES

Edwards, E.W.J. (2015). The breeding season distribution, foraging trip characteristics and habitat preference of northern fulmars, Fulmarus glacialis (Doctor of Philosophy). University of St. Andrews.

Furness, R. (2015). Non-breeding season populations of seabirds in UK waters: Population sizes for Biologically Defined Minimum Population Scales (BDMPS). Nat. Engl. Comm. Rep. 164.

Lawson J., Kober, K., Win, I., Allcock, Z., Black, J., Reid, J.B., Way, L. & O'Brien, S.H. (2016) An assessment of the numbers and distributions of wintering red-throated diver, little gull and common scoter in the Greater Wash. JNCC report No. 574

Natural England (2017a) Conservation Advice for Marine Protected Areas: Inner Dowsing, Race Bank and North Ridge SAC. Natural England Designated Sites website. Last updated: 16th March 2018. Available at:

Natural England (2017b) Conservation Advice for Marine Protected Areas: North Norfolk Coast SAC. Natural England Designated Sites website. Last updated: 15th September 2017. Available at:

https://designatedsites.naturalengland.org.uk/Marine/MarineSiteDetail.aspx?SiteCode =UK0019838&SiteName=the%20wash%20and&countyCode=&responsiblePerson=& SeaArea=&IFCAArea=&HasCA=1&NumMarineSeasonality=1&SiteNameDisplay=Nort h%20Norfolk%20Coast%20SAC

NatureScot (2019) - Marine Special Pr	otection Areas - Final advice to Scottish
Government. Available at:	
	[accessed 20/08/2022]

Planning Inspectorate (2022). Planning Inspectorate Advice Note Ten: Habitats Regulations Assessment relevant to nationally significant infrastructure projects. Republished August 2022 (version 9).

Searle, K., Mobbs, D., Daunt, F., Butler, A., (2019). A Population Viability Analysis Modelling Tool for Seabird Species (Natural England Commissioned Report No. ITT_4555).

SCOS (2017). Sci	entific Advice o	n Matters	Related to	the Manage	ment of	Seal
Populations: 2017	. Available at:					

Thaxter, C.B., Ross-Smith, V.H., Bouten, W., Clark, N.A., Conway, G.J., Rehfisch, M.M., Burton, N.H.K., (2015). Seabird—wind farm interactions during the breeding season vary within and between years: A case study of lesser black-backed gull Larus fuscus in the UK. Biol. Conserv. 186, 347–358.

Classification: Draft Status: Final

Classification: Draft

Doc. No. C282-RH-Z-GA-00158

Rev. no.1B

Wakefield, E.D., Owen, E., Baer, J., Carroll, M.J., Daunt, F., Dodd, S.G., Green, J.A., Guilford, T., Mavor, R.A., Miller, P.I., Newell, M.A., Newton, S.F., Robertson, G.S., Shoji, A., Soanes, L.M., Votier, S.C., Wanless, S., Bolton, M., (2017). Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species. Ecol. Appl. 27, 2074–2091.

Wakefield, E.D., Bodey, T.W., Bearhop, S., Blackburn, J., Colhoun, K., Davies, R., Dwyer, R.G., Green, J.A., Grémillet, D., Jackson, A.L., Jessopp, M.J., Kane, A., Langston, R.H.W., Lescroël, A., Murray, S., Le Nuz, M., Patrick, S.C., Péron, C., Soanes, L.M., Wanless, S., Votier, S.C., Hamer, K.C., (2013). Space Partitioning Without Territoriality in Gannets. Science 341, 68.

Woodward, I., Thaxter, C.B., Owen, E., Cook, A.S.C.P., 2019. Desk-based revision of seabird foraging ranges used for HRA screening.

Page 108 of 108

Status: Final